搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆偏振激光脉冲驱动的氩原子非次序双电离

余本海 李盈傧 汤清彬

引用本文:
Citation:

椭圆偏振激光脉冲驱动的氩原子非次序双电离

余本海, 李盈傧, 汤清彬

The nonsequential double ionization of argon atoms with elliptically polarized laser pulse

Yu Ben-Hai, Li Ying-Bin, Tang Qing-Bin
PDF
导出引用
  • 利用经典系综模型研究了椭圆偏振激光脉冲驱动的氩原子非次序双电离. 计算结果表明, 非次序双电离产率随着椭偏率的增大而减小; 双电离得到的电子对在激光偏振平面长轴方向的末态关联动量谱呈现正关联, 在激光偏振平面短轴方向的末态关联动量谱呈现反关联; Ar2+在激光偏振平面短轴方向的末态动量谱呈现单峰结构, 并且随着椭偏率增大而变宽. 轨迹分析显示, 椭圆偏振激光脉冲驱动下, 非次序双电离仍然是通过再碰撞而发生; 随着椭偏率的增大, 有效碰撞和单电离之间的时间延迟增加, 这是因为椭偏率较大时第一个电子需要经过多次往返才能与母核离子发生有效碰撞.
    With elliptically polarized laser pulse, the nonsequential double ionization (NSDI) of argon atoms is investigated using fully classical ensemble. The results show that the yield of NSDI decreases with increase of the ellipticity, that the momentum spectrum of the correlated electron from double ionization events in the final state shows a correlated behavior along the long axis of the laser polarization plane and an anticorrelated behavior along the short axis of the laser polarization plane, and that the momentum spectrum distribution of Ar2+ ion exhibits a single-peak structure at the zero along the short axis of the laser polarization plane, which becomes broader with the increase of the ellipticity. Trajectory back analyses show that the happening of NSDI is still due to recollision, and that the delay time between the collision and the single ionization increases with ellipticity increasing, which is because that the first electron needs more trips shuttling back and forth, so that it can recollide with the parent ion under the more ellipticity.
    • 基金项目: 国家自然科学基金(批准号: 11005088, 11047145);河南省科技计划(批准号: 102300410241, 112300410021)和河南省教育厅自然科学研究计划(批准号: 2009A140006, 2011B140018)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11005088, 11047145), the Science and Technology Project of Henan Province, China (Grant Nos. 102300410241, 112300410021), and the Scientific Research Foundation of Education Department of Henan Province, China (Grant Nos. 2009A140006, 2011B140018).
    [1]

    Voronov G S, Delone N B 1965 JETP Lett. 1 1

    [2]

    Liao Q, Zhou Y M, Huang C, Lu P X 2012 New J. Phys. 14 013001

    [3]

    Paulus G G, Grasbon F, Dreischuh A, Walther H, Kopold R, Becher W 2000 Phys. Rev. Lett. 84 3791

    [4]

    Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408

    [5]

    Hong W Y, Lu P X, Lan P F, Zhang Q B, Wang X B 2009 Opt. Express 17 5139

    [6]

    Cao W, Lu P X, Lan P F, Wang X L, Li Y H 2007 Phys. Rev. A 75 063423 (R)

    [7]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 021801

    [8]

    Zhang Q B, Lan P F, Hong W Y, Liao Q, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 4908 (in Chinese) [张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥 2009 物理学报 58 4908]

    [9]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001

    [10]

    Huang C, Zhou Y M, Tong A H, Liao Q, Hong W Y, Lu P X 2011 Opt. Express 19 5627

    [11]

    Zhou Y M, Huang C, Liao Q, Hong W Y, Lu P X 2011 Opt. Lett. 36 2758

    [12]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503

    [13]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001

    [14]

    Zhou Y M, Huang C, Tong A H, Liao Q, Lu P X 2011 Opt. Express 19 2301

    [15]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [16]

    Watson J B, Sanpera A, Lappas D G, Knight P L, Burnett K 1997 Phys. Rev. Lett. 78 1884

    [17]

    Weber T, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443

    [18]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [19]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dorner R 2000 Nature 405 658

    [20]

    Liu Y Q, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001

    [21]

    Zhang D L, Tang Q B, Yu B H, Chen D 2011 Acta Phys. Sin. 60 053205 (in Chinese) [张东玲, 汤清彬, 余本海, 陈东 2011 物理学报 60 053205]

    [22]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [23]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1994 Phys. Rev. A 49 2174

    [24]

    Dietrich P, Burnett N H, Ivanov M, Corkum P B 1994 Phys. Rev. A 50 R3585

    [25]

    Gillen G D, Walker M A, van Woerkom L D 2001 Phys. Rev. A 64 043413

    [26]

    Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V, Becker W 2008 Phys. Rev. A 77 063405

    [27]

    Hao X L, Wang G Q, Jia X Y, Li W D 2009 Phys. Rev. A 80 023408

    [28]

    Wang X, Eberly J H 2010 New J. Phys. 12 093047

    [29]

    Liao Q, Lu P X, Zhang Q B, Yang Z Y, Wang X B 2008 Opt. Express 16 17070

    [30]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004

    [31]

    Tang Q B, Zhang D L, Li Y B, Yu B H 2011 Commun. Theor. Phys. 56 927

    [32]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402

    [33]

    Haan S L, van Dyke J S, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [34]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775 (in Chinese) [汤清彬, 张东玲, 余本海, 陈东 2010 物理学报 59 7775]

    [35]

    Zhou Y M, Liao Q, Lu P X 2010 Opt. Express 18 16025

    [36]

    Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P X 2011 Opt. Express 18 632

    [37]

    Huang C, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 14293

    [38]

    Bhardwaj V R, Aseyev S A, Mehendale M, Yudin G L, Villeneuve D M, Rayner D M, Ivanov M Yu, Corkum P B 2001 Phys. Rev. Lett. 86 3522

  • [1]

    Voronov G S, Delone N B 1965 JETP Lett. 1 1

    [2]

    Liao Q, Zhou Y M, Huang C, Lu P X 2012 New J. Phys. 14 013001

    [3]

    Paulus G G, Grasbon F, Dreischuh A, Walther H, Kopold R, Becher W 2000 Phys. Rev. Lett. 84 3791

    [4]

    Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408

    [5]

    Hong W Y, Lu P X, Lan P F, Zhang Q B, Wang X B 2009 Opt. Express 17 5139

    [6]

    Cao W, Lu P X, Lan P F, Wang X L, Li Y H 2007 Phys. Rev. A 75 063423 (R)

    [7]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 021801

    [8]

    Zhang Q B, Lan P F, Hong W Y, Liao Q, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 4908 (in Chinese) [张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥 2009 物理学报 58 4908]

    [9]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001

    [10]

    Huang C, Zhou Y M, Tong A H, Liao Q, Hong W Y, Lu P X 2011 Opt. Express 19 5627

    [11]

    Zhou Y M, Huang C, Liao Q, Hong W Y, Lu P X 2011 Opt. Lett. 36 2758

    [12]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503

    [13]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001

    [14]

    Zhou Y M, Huang C, Tong A H, Liao Q, Lu P X 2011 Opt. Express 19 2301

    [15]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [16]

    Watson J B, Sanpera A, Lappas D G, Knight P L, Burnett K 1997 Phys. Rev. Lett. 78 1884

    [17]

    Weber T, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443

    [18]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [19]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dorner R 2000 Nature 405 658

    [20]

    Liu Y Q, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001

    [21]

    Zhang D L, Tang Q B, Yu B H, Chen D 2011 Acta Phys. Sin. 60 053205 (in Chinese) [张东玲, 汤清彬, 余本海, 陈东 2011 物理学报 60 053205]

    [22]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [23]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1994 Phys. Rev. A 49 2174

    [24]

    Dietrich P, Burnett N H, Ivanov M, Corkum P B 1994 Phys. Rev. A 50 R3585

    [25]

    Gillen G D, Walker M A, van Woerkom L D 2001 Phys. Rev. A 64 043413

    [26]

    Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V, Becker W 2008 Phys. Rev. A 77 063405

    [27]

    Hao X L, Wang G Q, Jia X Y, Li W D 2009 Phys. Rev. A 80 023408

    [28]

    Wang X, Eberly J H 2010 New J. Phys. 12 093047

    [29]

    Liao Q, Lu P X, Zhang Q B, Yang Z Y, Wang X B 2008 Opt. Express 16 17070

    [30]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004

    [31]

    Tang Q B, Zhang D L, Li Y B, Yu B H 2011 Commun. Theor. Phys. 56 927

    [32]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402

    [33]

    Haan S L, van Dyke J S, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [34]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775 (in Chinese) [汤清彬, 张东玲, 余本海, 陈东 2010 物理学报 59 7775]

    [35]

    Zhou Y M, Liao Q, Lu P X 2010 Opt. Express 18 16025

    [36]

    Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P X 2011 Opt. Express 18 632

    [37]

    Huang C, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 14293

    [38]

    Bhardwaj V R, Aseyev S A, Mehendale M, Yudin G L, Villeneuve D M, Rayner D M, Ivanov M Yu, Corkum P B 2001 Phys. Rev. Lett. 86 3522

  • [1] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [2] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [3] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [4] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [5] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [6] 黄诚, 钟明敏, 吴正茂. 低强度周期量级脉冲驱动排列分子的非次序双电离. 物理学报, 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [7] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响. 物理学报, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [8] 何曼丽, 王晓, 高思峰. 电子与氢及其同位素分子碰撞的非解离性电离截面研究 . 物理学报, 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [9] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [10] 吴晨阳, 谷锦华, 冯亚阳, 薛源, 卢景霄. 椭圆偏振光谱表征单晶硅衬底上生长的非晶硅和外延硅薄膜. 物理学报, 2012, 61(15): 157803. doi: 10.7498/aps.61.157803
    [11] 辛国国, 赵清, 刘杰. 非序列双电离向饱和区过渡的电子最大关联度. 物理学报, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [12] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [13] 辛国国, 叶地发, 赵清, 刘杰. 原子非序列双电离的多次返回碰撞电离机理分析. 物理学报, 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [14] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [15] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [16] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [17] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [18] 李洪云, 王兵兵, 蒋红兵, 陈 京, 李晓峰, 刘 杰, 龚旗煌, 傅盘铭. 静电场对强激光场非序列双电子电离的影响. 物理学报, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [19] 王晓峰, 贾天卿, 徐至展. 周期量级超短激光脉冲作用下导带电子的光吸收与碰撞电离. 物理学报, 2005, 54(7): 3451-3456. doi: 10.7498/aps.54.3451
    [20] 王骐, 陈建新, 夏元钦, 陈德应. 基于OFI椭圆偏振光场等离子体中电离电子能量分布的研究. 物理学报, 2002, 51(5): 1035-1039. doi: 10.7498/aps.51.1035
计量
  • 文章访问数:  4020
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-15
  • 修回日期:  2012-04-08
  • 刊出日期:  2012-10-05

椭圆偏振激光脉冲驱动的氩原子非次序双电离

  • 1. 信阳师范学院物理电子工程学院, 信阳 464000
    基金项目: 国家自然科学基金(批准号: 11005088, 11047145);河南省科技计划(批准号: 102300410241, 112300410021)和河南省教育厅自然科学研究计划(批准号: 2009A140006, 2011B140018)资助的课题.

摘要: 利用经典系综模型研究了椭圆偏振激光脉冲驱动的氩原子非次序双电离. 计算结果表明, 非次序双电离产率随着椭偏率的增大而减小; 双电离得到的电子对在激光偏振平面长轴方向的末态关联动量谱呈现正关联, 在激光偏振平面短轴方向的末态关联动量谱呈现反关联; Ar2+在激光偏振平面短轴方向的末态动量谱呈现单峰结构, 并且随着椭偏率增大而变宽. 轨迹分析显示, 椭圆偏振激光脉冲驱动下, 非次序双电离仍然是通过再碰撞而发生; 随着椭偏率的增大, 有效碰撞和单电离之间的时间延迟增加, 这是因为椭偏率较大时第一个电子需要经过多次往返才能与母核离子发生有效碰撞.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回