搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

理论研究B2分子X3g-和A3u态的光谱性质

刘慧 邢伟 施德恒 孙金锋 朱遵略

引用本文:
Citation:

理论研究B2分子X3g-和A3u态的光谱性质

刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略

Study on spectroscopic properties of B2 (X3g-, A3u) molecule

Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue
PDF
导出引用
  • 采用Davidson修正的内收缩多参考组态相互作用方法及Dunning等的相关一致基aug-cc-pV6Z计算了 B2分子X3g-和A3u电子态的势能曲线. 利用总能量外推公式, 将两个电子态的总能量分别外推至完全基组极限. 对势能曲线进行核价相关修正及相对论修正计算, 得到了同时考虑两种效应修正的外推势能曲线. 通过同位素质量识别, 得到了主要的同位素分子11B11B和10B11B的X3g- 和A3u电子态的光谱常数Te, Re, e, exe, eye, Be, e, e和e. 求解双原子分子核运动的径向Schrdinger方程, 找到了无转动的同位素分子11B2 (X3g-, A3u)和10B11B (X3g-, A3u)的全部振动态. 针对每一同位素分子的每一振动态, 分别计算了其振动能级和惯性转动常数等分子常数, 它们均与已有的实验结果较为一致. 其中, 10B11B (A3u) 分子的光谱常数和分子常数属首次报道.
    The X3g- and A3u states of B2 molecule are studied using highly accurate valence internally contracted multireference configuration interaction approach including the Davidson modification. The Dunning's correlation-consistent basis sets, aug-cc-pV6Z and aug-cc-pV5Z, are used in the study. To obtain more reliable results, the potential energy curves (PECs) of two electronic states are extrapolated to the complete basis set limit by the two-point total-energy extrapolation scheme. The effects of the core-valence correlation and relativistic correction on PEC are taken into account. Employing these PECs, the spectroscopic parameters (Te, Re, e, exe, eye, Be, e, e and e) of the X3g- and A3u states of two main isotopes (11B2, 10B11B) are determined and compared with those reported in the literature. Comparison with the experimental data demonstrates that the present results are accurate. With the PECs determined here, the whole vibrational states for 11B2 (X3g-, A3u) and 10B11B (X3g-, A3u) are determined when the rotational quantum number J equals zero (J=0) by numerically solving the radical Schrdinger equation of nuclear motion. For each vibrational state of every isotope species, the vibrational level and inertial rotation constants are obtained, which are in excellent accordance with the experimental findings.
    • 基金项目: 国家自然科学基金(批准号: 61077073); 河南省高校科技创新人才支持计划(批准号: 2008HASTIT008)和河南省科技计划(批准号: 122300410303)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61077073), the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2008HASTIT008), and the Program for Science and Technology of Henan Province, China (Grant No. 122300410303).
    [1]

    Mishima O, Tanaka J, Yamaoka S, Fukunaga O 1987 Science 238 181

    [2]

    Meinkohn D 1985 Combust. Flame 59 225

    [3]

    Douglas A K, Herzberg G 1940 Can. J. Res. A 18 165

    [4]

    Graham W R M, Weltner W 1976 J. Chem. Phys. 65 1516

    [5]

    Bredohl H, Dubois I, Nzohabonayo P 1982 J. Mol. Spectrosc. 93 281

    [6]

    Knight L B, Gregory B W, Cobranchi S T, Feller D, Davidson E R 1987 J. Am. Chem. Soc. 109 3521

    [7]

    Brazier C R, Carrick P G 1994 J. Chem. Phys. 100 7928

    [8]

    Tam S, Macler M, DeRose M E, Fajardo M E 2000 J. Chem. Phys. 113 9067

    [9]

    Bruna P J, Wright J S 1989 J. Chem. Phys. 91 1126

    [10]

    Langhoff S R, Bauschlicher C W 1991 J. Chem. Phys. 95 5882

    [11]

    Carmichael I 1989 J. Chem. Phys. 91 1072

    [12]

    Pellegatti A, Marinelli F, Roche M, Maynau D, Malrieu J P 1987 J. Physique 48 29

    [13]

    Bruna P J, Wright J S 1990 J. Phys. Chem. 94 1774

    [14]

    McLean A D, Liu B, Chandler G S 1992 J. Chem. Phys. 97 8459

    [15]

    Martin J M L, Francoisand J P, Gijbels R 1989 J. Chem. Phys. 90 6469

    [16]

    Bruna P J, Wright J S 1990 J. Phys. B 23 2197S

    [17]

    Deutsch P W, Curtiss L A, Pople J A 1990 Chem. Phys. Lett. 174 33

    [18]

    Howard I A, Ray A K 1997 Z. Phys. D 42 299

    [19]

    Bezugly V, Wielgus P, Kohout M, Wagner F R 2010 J. Comput. Chem. 31 1504

    [20]

    Müller T, Dallos M, Lischka H, Dubrovay Z, Szalay P G 2001 Theor. Chem. Acc. 105 227

    [21]

    Nguyen M T, Matus M H, Ngan V T, Grant D J, Dixon D A 2009 J. Phys. Chem. A 113 4895

    [22]

    Hachey M, Karna S P, Grien F 1992 J. Phys. B 25 1119

    [23]

    Tzeli D, Mavridis A 2005 J. Phys. Chem. A 109 10663

    [24]

    Miliordos E, Mavridis A 2010 J. Chem. Phys. 132 164307

    [25]

    Peterson K A, Kendall R S, Dunning T H 1993 J. Chem. Phys. 99 9790

    [26]

    Dupuis M, Liu B 1978 J. Chem. Phys. 68 2902

    [27]

    Xie A D, Zhu Z H 2006 Chin. J. Comput. Phys. 23 594 (in Chinese) [谢安东, 朱正和 2006 计算物理 23 594]

    [28]

    Yang C L, Zhu Z H, Wang R, Liu X Y 2001 J. Mol. Struct. (Theochem) 548 47

    [29]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [30]

    Davidson E R, Silver D W 1977 Chem. Phys. Lett. 52 403

    [31]

    Werner H-J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [32]

    Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514

    [33]

    Wilson A K, Mourik T V, Dunning T H 1996 J. Mol. Struct. 388 339

    [34]

    Mourik T V, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529

    [35]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [36]

    Krogh J W, Lindh R, Malmqvist P-Å, Roos B O, Veryazov V, Widmark P-O 2009 Molcas (Version 7.4) (Sweden: Lund University)

    [37]

    Liu H, Shi D H, Sun J F, Zhu Z L 2011 60 063101 (in Chinese) [刘慧, 施德恒, 孙金峰, 朱遵略 2011 物理学报 60 063101]

    [38]

    Liu H, Xing W, Shi D H, Zhu Z L, Sun J F 2011 60 043102 (in Chinese) [刘慧, 邢伟, 施德恒, 朱遵略, 孙金峰 2011 物理学报 60 043102]

    [39]

    Gao F, Yang C L, Hu Z Y, Wang M S 2007 Chin. Phys. 16 3668

    [40]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Mol. Spectrosc. 269 143

    [41]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2567

    [42]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [43]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [44]

    Kendall R A, Dunning T H, Harrison R J 1992 J. Chem. Phys. 96 6796

  • [1]

    Mishima O, Tanaka J, Yamaoka S, Fukunaga O 1987 Science 238 181

    [2]

    Meinkohn D 1985 Combust. Flame 59 225

    [3]

    Douglas A K, Herzberg G 1940 Can. J. Res. A 18 165

    [4]

    Graham W R M, Weltner W 1976 J. Chem. Phys. 65 1516

    [5]

    Bredohl H, Dubois I, Nzohabonayo P 1982 J. Mol. Spectrosc. 93 281

    [6]

    Knight L B, Gregory B W, Cobranchi S T, Feller D, Davidson E R 1987 J. Am. Chem. Soc. 109 3521

    [7]

    Brazier C R, Carrick P G 1994 J. Chem. Phys. 100 7928

    [8]

    Tam S, Macler M, DeRose M E, Fajardo M E 2000 J. Chem. Phys. 113 9067

    [9]

    Bruna P J, Wright J S 1989 J. Chem. Phys. 91 1126

    [10]

    Langhoff S R, Bauschlicher C W 1991 J. Chem. Phys. 95 5882

    [11]

    Carmichael I 1989 J. Chem. Phys. 91 1072

    [12]

    Pellegatti A, Marinelli F, Roche M, Maynau D, Malrieu J P 1987 J. Physique 48 29

    [13]

    Bruna P J, Wright J S 1990 J. Phys. Chem. 94 1774

    [14]

    McLean A D, Liu B, Chandler G S 1992 J. Chem. Phys. 97 8459

    [15]

    Martin J M L, Francoisand J P, Gijbels R 1989 J. Chem. Phys. 90 6469

    [16]

    Bruna P J, Wright J S 1990 J. Phys. B 23 2197S

    [17]

    Deutsch P W, Curtiss L A, Pople J A 1990 Chem. Phys. Lett. 174 33

    [18]

    Howard I A, Ray A K 1997 Z. Phys. D 42 299

    [19]

    Bezugly V, Wielgus P, Kohout M, Wagner F R 2010 J. Comput. Chem. 31 1504

    [20]

    Müller T, Dallos M, Lischka H, Dubrovay Z, Szalay P G 2001 Theor. Chem. Acc. 105 227

    [21]

    Nguyen M T, Matus M H, Ngan V T, Grant D J, Dixon D A 2009 J. Phys. Chem. A 113 4895

    [22]

    Hachey M, Karna S P, Grien F 1992 J. Phys. B 25 1119

    [23]

    Tzeli D, Mavridis A 2005 J. Phys. Chem. A 109 10663

    [24]

    Miliordos E, Mavridis A 2010 J. Chem. Phys. 132 164307

    [25]

    Peterson K A, Kendall R S, Dunning T H 1993 J. Chem. Phys. 99 9790

    [26]

    Dupuis M, Liu B 1978 J. Chem. Phys. 68 2902

    [27]

    Xie A D, Zhu Z H 2006 Chin. J. Comput. Phys. 23 594 (in Chinese) [谢安东, 朱正和 2006 计算物理 23 594]

    [28]

    Yang C L, Zhu Z H, Wang R, Liu X Y 2001 J. Mol. Struct. (Theochem) 548 47

    [29]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [30]

    Davidson E R, Silver D W 1977 Chem. Phys. Lett. 52 403

    [31]

    Werner H-J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [32]

    Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514

    [33]

    Wilson A K, Mourik T V, Dunning T H 1996 J. Mol. Struct. 388 339

    [34]

    Mourik T V, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529

    [35]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [36]

    Krogh J W, Lindh R, Malmqvist P-Å, Roos B O, Veryazov V, Widmark P-O 2009 Molcas (Version 7.4) (Sweden: Lund University)

    [37]

    Liu H, Shi D H, Sun J F, Zhu Z L 2011 60 063101 (in Chinese) [刘慧, 施德恒, 孙金峰, 朱遵略 2011 物理学报 60 063101]

    [38]

    Liu H, Xing W, Shi D H, Zhu Z L, Sun J F 2011 60 043102 (in Chinese) [刘慧, 邢伟, 施德恒, 朱遵略, 孙金峰 2011 物理学报 60 043102]

    [39]

    Gao F, Yang C L, Hu Z Y, Wang M S 2007 Chin. Phys. 16 3668

    [40]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Mol. Spectrosc. 269 143

    [41]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2567

    [42]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [43]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [44]

    Kendall R A, Dunning T H, Harrison R J 1992 J. Chem. Phys. 96 6796

  • [1] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质. 物理学报, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [2] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211688
    [3] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [4] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数. 物理学报, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [5] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [6] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [7] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [8] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [9] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [10] 王杰敏, 冯恒强, 孙金锋, 施德恒, 李文涛, 朱遵略. SiN自由基X2+, A2和B2+ 电子态的光谱常数研究. 物理学报, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [11] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. AlC分子 X4∑-和B4∑-电子态的光谱性质. 物理学报, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [12] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [13] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究. 物理学报, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [14] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [15] 魏洪源, 熊晓玲, 刘国平, 罗顺忠. TiO基态 (X 3 Δr) 的势能函数与光谱常数. 物理学报, 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [16] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [17] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [18] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [19] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 物理学报, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [20] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正. 物理学报, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
计量
  • 文章访问数:  3697
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-14
  • 修回日期:  2012-05-09
  • 刊出日期:  2012-10-05

理论研究B2分子X3g-和A3u态的光谱性质

  • 1. 信阳师范学院物理电子工程学院, 信阳 464000;
  • 2. 河南师范大学物理与信息工程学院, 新乡 453007
    基金项目: 国家自然科学基金(批准号: 61077073); 河南省高校科技创新人才支持计划(批准号: 2008HASTIT008)和河南省科技计划(批准号: 122300410303)资助的课题.

摘要: 采用Davidson修正的内收缩多参考组态相互作用方法及Dunning等的相关一致基aug-cc-pV6Z计算了 B2分子X3g-和A3u电子态的势能曲线. 利用总能量外推公式, 将两个电子态的总能量分别外推至完全基组极限. 对势能曲线进行核价相关修正及相对论修正计算, 得到了同时考虑两种效应修正的外推势能曲线. 通过同位素质量识别, 得到了主要的同位素分子11B11B和10B11B的X3g- 和A3u电子态的光谱常数Te, Re, e, exe, eye, Be, e, e和e. 求解双原子分子核运动的径向Schrdinger方程, 找到了无转动的同位素分子11B2 (X3g-, A3u)和10B11B (X3g-, A3u)的全部振动态. 针对每一同位素分子的每一振动态, 分别计算了其振动能级和惯性转动常数等分子常数, 它们均与已有的实验结果较为一致. 其中, 10B11B (A3u) 分子的光谱常数和分子常数属首次报道.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回