搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质

黄多辉 王藩侯 杨俊升 万明杰 曹启龙 杨明超

引用本文:
Citation:

SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质

黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超

Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule

Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao
PDF
导出引用
  • 对O原子以aug-cc-pvTZ为基组,Sn原子以aug-cc-pvTZ-PP为基组,分别采用多参考组态相互作用方法(MRCI)及运用Davidson 修正的多参考组态相互作用方法对SnO分子基态X1Σ+ 及两 个激发态a3Π和A1Π态的势能曲线进行计算,进而得到了各态的平衡键长Re,谐振频率ωe,非谐振常数ωeχe,转动常数Be,垂直跃迁能Te 以及离解能De,通过群论原理确定了各电子状态和离解通道. 计算结果表明:3个电子态有共同的离解通道,即Sn(3P)+O(3P);利用Level程序对势能曲线进行拟合得到的光谱数据表明,MRCI方法的计算结果与实验值符合更好;通过求解核运动的Schrödinger方程得到了J=0 时这三个电子态的前30个振动态的Bv和Dv 等分子常数和振动能级E.
    Potential energy curves (PECs) for the ground state and the second excited state (a3Π and A1Π) of SnO molecule are calculated by using the multi-reference configuration interaction method (MRCI) and also considering Davidson correction’ multi-reference configuration interaction method with aug-cc-pvTZ basis for O atom, aug-cc-pvTZ-PP basis for Sn atom, respectively. On the basis of the PECs, the Re, ωe, ωeχe, Be, Te and De are obtained. The symmetries and dissociation limits for these electronic states are determined by group theory. The results show that three electronic states are dissociated along the same channel, Sn (3P)+O (3P). And then the PECs are fitted by using level program. The spectroscopic constants are determined according to fitted results, which shows that MRCI results are in good agreement with the experimental values. By solving the radial Schrödinger equation of nuclear motion, the vibration levels can be obtained, molecular constant (Bv and Dv) are reported for the first time at J=0.
    • 基金项目: 教育部全国大学生创新创业训练计划(批准号:201210641106)和四川省教育厅科研基金(批准号:13ZA0198)资助的课题.
    • Funds: Project supported by the National Undergraduate Innovation and Entrepreneurship Training Program, China (Grant No. 201210641106) and the Science Research Foundation of Sichuan Educational Committee, China (Grant No. 13ZA0198).
    [1]

    Duan W H, Gu B L, Zhu J L1990 Acta Phys. Sin. 39 437 (in Chinese) [段文晖, 顾秉林, 朱嘉麟 1990 物理学报 39 437]

    [2]

    Tan X Y, Chen C L, Jin K X, Cao X S, Xing H 2011 Chin. Phys. B 20 057101

    [3]

    Colin R, Drowart J, Verhaegen G 1965 Trans. Faraday Soc. 61 1364

    [4]

    Balasubramanian K, Pitzer K S 1983 Chem. Phys. Lett. 100 273

    [5]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: Van Nostrand Reinhold) p616

    [6]

    Wolf A, Reiher M, Hess A H 2004 J. Chem. Phys. 120 8624

    [7]

    Davico G E, Ramond T M, Lineberger W C 2000 J. Chem. Phys. 113 8852

    [8]

    Giri D, Buenker R J, Das K K 2002 J. Phys. Chem. A 106 8790

    [9]

    Jalbout A F, Li X H, Abou-Rachid H 2007 Int. J. Quantum Chem. 107 522

    [10]

    Werner H J, Knowles P J, Amos R D, Bernhardsson A, Berning A, Celani P, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Korona T, Lindh R, Lloyd A W, McNicholas S J, Manby F R, Meyer W, Mura M E, Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schutz M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T 2009 MOLPRO, a package of ab initio programs designed by Werner H J, Knowles P J Version 2009

    [11]

    Le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels’ University of Waterloo Chemical Physics Research Report No. CP-663

    [12]

    Peterson K A, Figgen D, Goll E, Stoll H, Dolg M 2003 J. Chem. Phys. 119 11113

    [13]

    Wernal H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [14]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [15]

    Wang M W, Wang B W, Chen Z D 2008 Sci. Chin. B: Chemistry 51 521

    [16]

    Barandiarán Z, Seijo L, 1994 J. Chem. Phys. 101 4049

    [17]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 043101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略 2013 物理学报 62 043101]

    [18]

    Liu D M, Zhang S D 2012 Acta Phys. Sin. 61 033101 (in Chinese) [刘冬梅, 张树东 2012 物理学报 61 033101]

  • [1]

    Duan W H, Gu B L, Zhu J L1990 Acta Phys. Sin. 39 437 (in Chinese) [段文晖, 顾秉林, 朱嘉麟 1990 物理学报 39 437]

    [2]

    Tan X Y, Chen C L, Jin K X, Cao X S, Xing H 2011 Chin. Phys. B 20 057101

    [3]

    Colin R, Drowart J, Verhaegen G 1965 Trans. Faraday Soc. 61 1364

    [4]

    Balasubramanian K, Pitzer K S 1983 Chem. Phys. Lett. 100 273

    [5]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: Van Nostrand Reinhold) p616

    [6]

    Wolf A, Reiher M, Hess A H 2004 J. Chem. Phys. 120 8624

    [7]

    Davico G E, Ramond T M, Lineberger W C 2000 J. Chem. Phys. 113 8852

    [8]

    Giri D, Buenker R J, Das K K 2002 J. Phys. Chem. A 106 8790

    [9]

    Jalbout A F, Li X H, Abou-Rachid H 2007 Int. J. Quantum Chem. 107 522

    [10]

    Werner H J, Knowles P J, Amos R D, Bernhardsson A, Berning A, Celani P, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Korona T, Lindh R, Lloyd A W, McNicholas S J, Manby F R, Meyer W, Mura M E, Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schutz M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T 2009 MOLPRO, a package of ab initio programs designed by Werner H J, Knowles P J Version 2009

    [11]

    Le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels’ University of Waterloo Chemical Physics Research Report No. CP-663

    [12]

    Peterson K A, Figgen D, Goll E, Stoll H, Dolg M 2003 J. Chem. Phys. 119 11113

    [13]

    Wernal H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [14]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [15]

    Wang M W, Wang B W, Chen Z D 2008 Sci. Chin. B: Chemistry 51 521

    [16]

    Barandiarán Z, Seijo L, 1994 J. Chem. Phys. 101 4049

    [17]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 043101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略 2013 物理学报 62 043101]

    [18]

    Liu D M, Zhang S D 2012 Acta Phys. Sin. 61 033101 (in Chinese) [刘冬梅, 张树东 2012 物理学报 61 033101]

  • [1] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算. 物理学报, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [3] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [4] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [5] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [6] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [7] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [8] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [9] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [10] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究. 物理学报, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [11] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [12] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [13] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [14] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [15] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [16] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [17] 施德恒, 孙金锋, 朱遵略, 马 恒, 杨向东. 7Li2(X1Σ+g)分子的振动能级、转动惯量及离心畸变常数. 物理学报, 2008, 57(1): 165-171. doi: 10.7498/aps.57.165
    [18] 施德恒, 孙金锋, 刘玉芳, 马 恒, 朱遵略, 杨向东. 7Li2分子23Πu激发态的解析势能函数、振动能级及其转动惯量. 物理学报, 2007, 56(8): 4454-4460. doi: 10.7498/aps.56.4454
    [19] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [20] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 物理学报, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
计量
  • 文章访问数:  2955
  • PDF下载量:  415
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-11
  • 修回日期:  2013-12-09
  • 刊出日期:  2014-04-05

SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质

  • 1. 宜宾学院, 计算物理四川省高等学校重点实验室, 宜宾 644000
    基金项目: 教育部全国大学生创新创业训练计划(批准号:201210641106)和四川省教育厅科研基金(批准号:13ZA0198)资助的课题.

摘要: 对O原子以aug-cc-pvTZ为基组,Sn原子以aug-cc-pvTZ-PP为基组,分别采用多参考组态相互作用方法(MRCI)及运用Davidson 修正的多参考组态相互作用方法对SnO分子基态X1Σ+ 及两 个激发态a3Π和A1Π态的势能曲线进行计算,进而得到了各态的平衡键长Re,谐振频率ωe,非谐振常数ωeχe,转动常数Be,垂直跃迁能Te 以及离解能De,通过群论原理确定了各电子状态和离解通道. 计算结果表明:3个电子态有共同的离解通道,即Sn(3P)+O(3P);利用Level程序对势能曲线进行拟合得到的光谱数据表明,MRCI方法的计算结果与实验值符合更好;通过求解核运动的Schrödinger方程得到了J=0 时这三个电子态的前30个振动态的Bv和Dv 等分子常数和振动能级E.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回