搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LiAl分子基态、激发态势能曲线和振动能级

陈恒杰

引用本文:
Citation:

LiAl分子基态、激发态势能曲线和振动能级

陈恒杰

Potential energy curves and vibrational levels of ground and excited states of LiAl

Chen Heng-Jie
PDF
导出引用
  • 利用单双激发多参考组态相互作用方法获得了LiAl分子基态X1∑+及七个激发态a3∏, A1∏, b3∑+, c3∑+, B1∏, C1∑+, d3∏的势能曲线, 通过势能曲线得到各态的平衡核间距Re, 进而求得绝热激发能和垂直激发能.计算结果表明:c3∑+ 电子态是一个不稳定的排斥态, A1∏态是一个较弱的束缚态, 其余6个电子态均为束缚态; b3∑+与 c3∑+态之间存在预解离现象; 8个电子态分别解离到两个通道, 即Li(2S)+Al(2P0)与Li(2P0)+Al(2P0). 接着将势能曲线拟合到Murrel-Sorbie解析势能函数形式, 据此获得各态的光谱数据:基态X1∑+的平衡键长为0.2863 nm, 谐振频率为316 cm-1, 解离能De为1.03 eV, 激发态a3∏, A1∏, b3∑+, c3∑+, B1∏, C1∑+, d3∏的垂直激发能依次为0.27, 0.83, 1.18, 1.14, 1.62, 1.81, 2.00 eV; 解离能依次为1.03, 0.82, 0.26, 排斥态, 1.54, 1.10, 0.93 eV, 相应谐振频率 ωe为339, 237, 394, 排斥态, 429, 192, 178 cm-1. 通过求解核运动的薛定谔方程找到了J=0时 LiAl分子7个束缚电子态的振动能级和转动惯量.
    The potential energy curves (PECs) for ground electronic state (X1∑+) and seven excited electronic states (a3∏, A1∏, b3∑+, c3∑+, B1∏, C1∑+, d3∏) of LiAl are obtained using the multi-configuration reference single and double excited configuration interaction method. Equilibrium bond length Re, adiabatic excited energy Te and vertical excited energy Tv are obtained. It is shown that c3∑+ is an unstable repulsive state, A1∏ is a weak bound state and the others are all bound states. Predissociation can be found between b3∑+ and c3∑+ states. Eight electronic states are dissociated along two channels, Li(2S)+Al(2P0) and Li(2P0)+Al(2P0). And then PECs are fitted to analytical Murrell-Sorbie (MS) potential function to deduce the spectroscopic parameters:the Re is 0.2863 nm, ωe is 316 cm-1 and De is 1.03 eV for the ground state; the values of Tv of excited states are 0.27, 0.83, 1.18, 1.14, 1.62, 1.81 and 2.00 eV; the values of De are 1.03, 0.82 and 0.26, repulsive state, 1.54, 1.10, 0.93 eV, and the values of corresponding frequency ωe are 339, 237, 394, repulsive state, 429, 192, 178 cm-1. By solving the radial Schrödinger equation of nuclear motion, the vibration levels, inertial rotation constants (J=0) are reported for the first time.
    • 基金项目: 国家自然科学基金(批准号:11176020/A06)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11176020/A06).
    [1]

    Boldyrev A I, Simons J, Schleyer P V R 1993 J. Chem. Phys. 99 8793

    [2]

    Boldyrev A I, Gonzales N, Simons J 1994 J. Phys. Chem. 98 9931

    [3]

    Brock L R, Pilgrim J S, Duncan M A 1994 Chem. Phys. Lett. 230 93

    [4]

    Gutsev G L, Jena P, Bartlett R J 1999 J. Chem. Phys. 110 2928

    [5]

    Ruette F, Sánchez M, Añez R, Bermúdez A, Sierraalta A 2005 J. Mol. Struct. (Theochem) 729 19

    [6]

    Wang J C, Zhai D M, Guo F, Ouyang Y F, Du Y, Feng Y P 2008 Theor. Chem. Account. 121 165

    [7]

    Chen H J, Cheng X L, Tang H Y, Wang Q W, Su X F 2010 Acta Phys. Sin. 59 4556 (in Chinese) [陈恒杰, 程新路, 唐海燕, 王全武, 苏欣芳 2010 物理学报 59 4556]

    [8]

    Chen H J, Tang H Y, Cheng X L, Wang Q W 2010 Acta Phys. -Chim. Sin. 26 740 (in Chinese) [陈恒杰, 唐海燕, 程新路, 王全武 2010 物理化学学报 26 740]

    [9]

    Sun B G, Chen H J, Liu F K, Yang Y H 2011 Acta Chem. Sin. 69 761 (in Chinese) [孙宝光, 陈恒杰, 刘丰奎, 杨耀辉 2011 化学学报 69 761]

    [10]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [11]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650

    [12]

    Mclean A D, Chandler G S 1980 J. Chem. Phys. 72 5639

    [13]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    [14]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358

    [15]

    Neese F 2012 Revision 2.9.01 February 2012 ORCA–An ab initio, DFT and semiempircal SCF-MO package

    [16]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559

    [17]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing:Science Press) (in Chinese) [朱正和, 俞华根 1997 分子结构与势能函数 (北京:科学出版社)]

    [18]

    Liu D M, Zhang S D 2012 Acta Phys. Sin. 61 033101 (in Chinese) [刘东梅, 张树东 2012 物理学报 61 033101]

    [19]

    Shi D H, Wei X, Hui L, Sun J F, Zhu Z L, Liu Y F 2012 Spectro. Acta A 93 367

    [20]

    Shi D H, Li W T, Sun J F, Zhu Z L 2012 Internal. J. Quan. Chem. 1002 1

    [21]

    Le Roy R J 2007 'Level8.0:A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels' University of Waterloo Chemical Physics Research Report No. CP-663

  • [1]

    Boldyrev A I, Simons J, Schleyer P V R 1993 J. Chem. Phys. 99 8793

    [2]

    Boldyrev A I, Gonzales N, Simons J 1994 J. Phys. Chem. 98 9931

    [3]

    Brock L R, Pilgrim J S, Duncan M A 1994 Chem. Phys. Lett. 230 93

    [4]

    Gutsev G L, Jena P, Bartlett R J 1999 J. Chem. Phys. 110 2928

    [5]

    Ruette F, Sánchez M, Añez R, Bermúdez A, Sierraalta A 2005 J. Mol. Struct. (Theochem) 729 19

    [6]

    Wang J C, Zhai D M, Guo F, Ouyang Y F, Du Y, Feng Y P 2008 Theor. Chem. Account. 121 165

    [7]

    Chen H J, Cheng X L, Tang H Y, Wang Q W, Su X F 2010 Acta Phys. Sin. 59 4556 (in Chinese) [陈恒杰, 程新路, 唐海燕, 王全武, 苏欣芳 2010 物理学报 59 4556]

    [8]

    Chen H J, Tang H Y, Cheng X L, Wang Q W 2010 Acta Phys. -Chim. Sin. 26 740 (in Chinese) [陈恒杰, 唐海燕, 程新路, 王全武 2010 物理化学学报 26 740]

    [9]

    Sun B G, Chen H J, Liu F K, Yang Y H 2011 Acta Chem. Sin. 69 761 (in Chinese) [孙宝光, 陈恒杰, 刘丰奎, 杨耀辉 2011 化学学报 69 761]

    [10]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [11]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650

    [12]

    Mclean A D, Chandler G S 1980 J. Chem. Phys. 72 5639

    [13]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    [14]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358

    [15]

    Neese F 2012 Revision 2.9.01 February 2012 ORCA–An ab initio, DFT and semiempircal SCF-MO package

    [16]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559

    [17]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing:Science Press) (in Chinese) [朱正和, 俞华根 1997 分子结构与势能函数 (北京:科学出版社)]

    [18]

    Liu D M, Zhang S D 2012 Acta Phys. Sin. 61 033101 (in Chinese) [刘东梅, 张树东 2012 物理学报 61 033101]

    [19]

    Shi D H, Wei X, Hui L, Sun J F, Zhu Z L, Liu Y F 2012 Spectro. Acta A 93 367

    [20]

    Shi D H, Li W T, Sun J F, Zhu Z L 2012 Internal. J. Quan. Chem. 1002 1

    [21]

    Le Roy R J 2007 'Level8.0:A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels' University of Waterloo Chemical Physics Research Report No. CP-663

  • [1] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究. 物理学报, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [3] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算. 物理学报, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [4] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [5] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [6] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [7] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [8] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [9] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [10] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [11] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [12] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [13] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [14] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [15] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [16] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [17] 施德恒, 孙金锋, 朱遵略, 马 恒, 杨向东. 7Li2(X1Σ+g)分子的振动能级、转动惯量及离心畸变常数. 物理学报, 2008, 57(1): 165-171. doi: 10.7498/aps.57.165
    [18] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [19] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 物理学报, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] 陈丽娟, 侯柱锋, 朱梓忠, 杨 勇. LiAl中空位形成能的第一原理计算. 物理学报, 2003, 52(9): 2229-2234. doi: 10.7498/aps.52.2229
计量
  • 文章访问数:  10353
  • PDF下载量:  715
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-31
  • 修回日期:  2012-12-17
  • 刊出日期:  2013-04-05

LiAl分子基态、激发态势能曲线和振动能级

  • 1. 重庆科技学院数理学院, 重庆 401331
    基金项目: 国家自然科学基金(批准号:11176020/A06)资助的课题.

摘要: 利用单双激发多参考组态相互作用方法获得了LiAl分子基态X1∑+及七个激发态a3∏, A1∏, b3∑+, c3∑+, B1∏, C1∑+, d3∏的势能曲线, 通过势能曲线得到各态的平衡核间距Re, 进而求得绝热激发能和垂直激发能.计算结果表明:c3∑+ 电子态是一个不稳定的排斥态, A1∏态是一个较弱的束缚态, 其余6个电子态均为束缚态; b3∑+与 c3∑+态之间存在预解离现象; 8个电子态分别解离到两个通道, 即Li(2S)+Al(2P0)与Li(2P0)+Al(2P0). 接着将势能曲线拟合到Murrel-Sorbie解析势能函数形式, 据此获得各态的光谱数据:基态X1∑+的平衡键长为0.2863 nm, 谐振频率为316 cm-1, 解离能De为1.03 eV, 激发态a3∏, A1∏, b3∑+, c3∑+, B1∏, C1∑+, d3∏的垂直激发能依次为0.27, 0.83, 1.18, 1.14, 1.62, 1.81, 2.00 eV; 解离能依次为1.03, 0.82, 0.26, 排斥态, 1.54, 1.10, 0.93 eV, 相应谐振频率 ωe为339, 237, 394, 排斥态, 429, 192, 178 cm-1. 通过求解核运动的薛定谔方程找到了J=0时 LiAl分子7个束缚电子态的振动能级和转动惯量.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回