搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究

高峰 张红 张常哲 赵文丽 孟庆田

引用本文:
Citation:

SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究

高峰, 张红, 张常哲, 赵文丽, 孟庆田

Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion

Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian
PDF
HTML
导出引用
  • 基于Molpro 2012程序包, 应用包含Davidson修正的多参考组态相互作用方法, 使用AVX Z和AVX dZ (X = T, Q, 5, 6)基组进行单点能从头算, 然后采用Aguado-Paniagua函数进行拟合, 得到了SiH+(X1Σ+)离子在不同基组、不同方法和是否考虑自旋-轨道耦合(SOC)情况下的解析势能函数(APEFs). 以APEFs为基础, 计算了SiH+(X1Σ+)离子的解离能De, 平衡键长Re, 振动频率ωe, 光谱常数Be, αeωeχe, 同时讨论了SOC对该体系的影响. 本文的计算结果与其他理论计算符合得较好, 与实验数值也基本吻合. 基于SOC-AV6dZ方法下的APEF, 通过求解径向薛定谔方程, 给出了SiH+(X1Σ+)离子的前23个振动能级(j = 0), 并详细列出了每1个振动能级及其相应的经典拐点, 每个振动态的转动常数和6个离心畸变常数, 且提供了振动能级图. 该工作对于实验和后续的理论工作有参考和指导作用.
    The analytical potential energy function (APEF) of SiH+(X1Σ+) is fitted by Aguado-Paniagua function with 112 ab initio energy points, which are calculated by Molpro 2012 Package with the multi-reference configuration interaction including the Davidson correction method using AVX Z and AVX dZ (X = Q, 5, 6) basis sets. Moreover, the calculated ab initio energy points are subsequently extrapolated to complete basis set (CBS) limit to avoid the basis set superposition error. All the fitting parameters of APEFs for AV6Z, CBS(Q, 5), AV6dZ, CBS(Qd, 5d), SA-AV6dZ and SOC-AV6dZ methods are gathered. The potential energy curves (PEC) and the corresponding ab initio points are also shown. As can be seen, the PECs show excellent agreement with the ab initio points and a smooth behavior both in short range and long range, which ensures the high quality of fitting process for the current APEFs. Based on these APEFs of different basis sets and methods including AVQZ, AV5Z, AV6Z, CBS(Q, 5), AVQdZ, AV5dZ, AV6dZ and CBS(Qd, 5d), the spectral constants De, Re, ωe, Be, αe and ωeχe are obtained. In addition, the effects of spin-orbit coupling interaction (SOC) on the system are also investigated. By comparing the spectral constants of SA-AV6dZ with the ones of SOC-AV6dZ, it is found that the effect of SOC on SiH+(X1Σ+) is small and can be ignored. We also compare the spectral constants in this work with the experimental values and other theoretical results. The results of this work accord well with the corresponding experimental and other theoretical results. It is worth noting that the deviation of dissociation energy between the theoretical calculations and experimental values is relatively large. Based on this conclusion, we suggest that the spectral constants including the dissociation energy for SiH+(X1Σ+) should be remeasured. Based on the APEF of SOC-AV6dZ which should be more accurate than others in theory, the top 23 vibrational states (j = 0) of SiH+(X1Σ+) are calculated first by solving the radial Schrödinger equation. All the vibrational energy levels, classical turning points, rotation constants and six centrifugal distortion constants are also provided. The results of this work can provide significant references for the experimental and other theoretical work.
      通信作者: 赵文丽, zwl@sdau.edu.cn ; 孟庆田, qtmeng@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674198, 11804195)资助的课题
      Corresponding author: Zhao Wen-Li, zwl@sdau.edu.cn ; Meng Qing-Tian, qtmeng@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674198, 11804195)
    [1]

    Grevesse N, Sauval A J 1970 Astron. Astrophys. 9 232

    [2]

    Douglas A E, Lutz B L 1970 Can. J. Phys. 48 247Google Scholar

    [3]

    Grevesse N, Sauval A J 1971a J. Quant. Spectrosc. Radiat. Transf. 11 65Google Scholar

    [4]

    Almeida A A, Sing P D 1978 Astrophys. Space Sci. 56 415Google Scholar

    [5]

    Gao W, Wang B B, Hu X J, Chai S, Han Y C, Greenwood J B 2017 Phys. Rev. A 96 013426Google Scholar

    [6]

    Wang B B, Han Y C, Gao W, Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926Google Scholar

    [7]

    Moore P L, Browne J C, Matsen F A 1965 J. Chem. Phys. 43 903Google Scholar

    [8]

    Cosby P C, Helm H, Moseley J T 1980 Astrophys. J. 235 52Google Scholar

    [9]

    Barinovs G, Hemert M C V 2006 Astrophys. J. 636 923Google Scholar

    [10]

    Ram R S, Engleman R, Bernath P F 1998 J. Mol. Spectrosc. 190 341Google Scholar

    [11]

    Singh P D, Vanlandingham F G 1978 Astron. Astrophys. 66 87Google Scholar

    [12]

    Carlson T A, Copley J, Duric N, Elander N, Erman P, Larsson M, Lyyra M 1980 Astron. Astrophys. 83 238

    [13]

    Hishikawa A, Karawajczyk A 1993 J. Mol. Spectrosc. 158 479Google Scholar

    [14]

    Davies P B, Martineau P M 1988 J. Chem. Phys. 88 485Google Scholar

    [15]

    Mosnier J P, Kennedy E T, Kampen P V, Cubaynes D, Guilbaud S, Sisourat N, Puglisi A, Carniato S, Bizau J M 2016 Phys. Rev. A 93 061401Google Scholar

    [16]

    Hirst D M 1986 Chem. Phys. Lett. 128 504Google Scholar

    [17]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Che. 8 61Google Scholar

    [18]

    Matos J M O, Kello V, Roos B O, Sadlej A J 1988 J. Chem. Phys. 89 423Google Scholar

    [19]

    Sannigrahi A B, Buenker R J, Hirsch G, Gu J P 1995 Chem. Phys. Lett. 237 204Google Scholar

    [20]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schutz M, et al. Molpro, A Package of ab initio Programs (Version 2015.1) http://www.molpro.net [2021-03-08]

    [21]

    Zhang Y G, Dou G, Cui J, Yu Y 2018 J. Mol. Struct. 1165 318Google Scholar

    [22]

    Neese F 2011 Wiley Interdisci. Rev. Comput. Mol. Sci. 2 73

    [23]

    Biglari Z, Shayesteh A, Ershadifar S 2018 J. Quant. Spectrosc. Radiat. Transf. 221 80Google Scholar

    [24]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schutz M, et al. Molpro, A Package of ab initio Programs (Version 2012.1) http://www.molpro.net [2021-03-08]

    [25]

    Aguado A, Paniagua M 1992 J. Chem. Phys. 96 1265Google Scholar

    [26]

    Aguado A, Tablero C, Paniagua M 1998 Comput. Phys. Commun. 108 259Google Scholar

    [27]

    Varandas A J C 2007 J. Chem. Phys. 126 244105Google Scholar

    [28]

    Varandas A J C 2000 J. Chem. Phys. 113 8880Google Scholar

    [29]

    Jansen H B, Ross P 1969 Chem. Phys. Lett. 3 140Google Scholar

    [30]

    Liu B, McLean A D 1973 J. Chem. Phys. 59 4557Google Scholar

    [31]

    Karton A, Martin J M L 2006 Theor. Chem. ACC. 115 330Google Scholar

    [32]

    Yang C L, Huang Y J, Zhang X, Han K L 2003 J. Mol. Struc. Theochem. 625 289Google Scholar

    [33]

    Yang C L, Zhang X, Han K L 2004 J. Mol. Struc. Theochem. 676 209Google Scholar

    [34]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. IV) (New York: Springer) p600

    [35]

    Roy R J L 2017 J. Quant. Spectrosc. Radiat. Transf. 186 167Google Scholar

  • 图 1  SiH+(X1Σ+)在CBS(Q, 5)和AV6Z基组下的势能曲线和从头算能量点

    Fig. 1.  Potential energy curves and ab initio points at CBS(Q, 5) and AV6Z results.

    图 2  SiH+(X1Σ+)应用CBS(Qd, 5d)和AV6dZ基组的势能曲线和从头算能量点

    Fig. 2.  Potential energy curves and ab initio points at CBS(Qd, 5d) and AV6dZ results.

    图 3  SiH+离子的${{\rm{X}}^1}{\Sigma ^ + }$, ${{\rm{A}}^1}\Pi$, ${\rm{b}}{}^3{\Sigma ^ + }$${{\rm{a}}^3}\Pi$态在SOC-AV6dZ基组下的从头算能量点

    Fig. 3.  The ab initio points of ${{\rm{X}}^1}{\Sigma ^ + }$, ${{\rm{A}}^1}\Pi$, ${\rm{b}}{}^3{\Sigma ^ + }$ and ${{\rm{a}}^3}\Pi$ states for SiH+ cation at SOC-AV6dZ results.

    图 4  SiH+(X1Σ+)在SA-AV6dZ和SOC-AV6dZ基组下的从头算能量点与拟合势能曲线

    Fig. 4.  Potential energy curves and ab initio points at SA-AV6dZ and SOC-AV6dZ results.

    图 5  SiH+(X1Σ+)离子在SOC-AV6 dZ方法下, j = 0时的前23个振动能级

    Fig. 5.  Top 23 vibrational energy levels of SiH+(X1Σ+) when j = 0 at SOC-AV6 dZ result.

    表 1  SiH+(X1Σ+) APEFs的拟合参数

    Table 1.  Parameters of APEFs for SiH+(X1Σ+).

    AV6ZCBS(Q, 5)AV6dZCBS(Qd, 5d)SA-AV6dZSOC-AV6dZ
    a00.50876826×1010.50552062×1010.50858283×1010.50691706×1010.50773275×1010.50772768×101
    a1–0.13804619×100–0.14563907×100–0.13801387×100–0.14215220×100–0.13720269×100–0.15322183×100
    a2–0.13563746×101–0.14531223×101–0.13570613×101–0.14215828×101–0.16375066×1010.30937784×100
    a3–0.51802913×102–0.49687570×102–0.51738027×102–0.50317640×102–0.42586263×102–0.92938545×102
    a40.62749955×1030.59645776×1030.62624067×1030.60422890×1030.45856480×1030.11152320×104
    a5–0.48068238×104–0.45486708×104–0.47942732×104–0.45972031×104–0.30344319×104–0.81653091×104
    a60.26148147×1050.24858810×1050.26073093×1050.24994077×1050.14706913×1050.40426343×105
    a7–0.98935973×105–0.94946694×105–0.98651660×105–0.94886015×105–0.51962969×105–0.13681997×106
    a80.24960293×1060.24200403×1060.24891691×1060.24047472×1060.12676883×1060.31028426×106
    a9–0.39722347×106–0.38879401×106–0.39620641×106–0.38442238×106–0.19927330×106–0.44979467×106
    a100.35937312×1060.35468541×1060.35853489×1060.34921672×1060.18029764×1060.37617755×106
    a11–0.14069370×106–0.13986829×106–0.14040272×106–0.13721966×106–0.71149416×106–0.13802294×106
    β10.68900.68000.68900.68400.68700.6870
    β20.74700.74700.74700.74700.74700.7470
    Ermsd/
    (kcal·mol–1)
    1.60176420×10–21.61755859×10–21.60042370×10–21.627559848×10–29.45767662×10–31.11170443×10–2
    下载: 导出CSV

    表 2  SiH+(X1Σ+)的平衡键长Re, 解离能De, 振动频率ωe, 光谱常数ωeχe, αeβe

    Table 2.  Spectroscopic constants compared with the experimental values and other theoretical results for SiH+(X1Σ+).

    基组De(Eh)Re(a0)ωe/cm–1βe/cm–1αe/cm–1ωeχe/cm–1
    AVQZ0.1246402.8519252153.2457.6074400.21932742.373
    AV5Z0.1253882.8485892155.7927.6252720.21896042.220
    AV6Z0.1255842.8480012156.6867.6284100.21883342.189
    CBS(Q, 5)0.1258562.8470532157.1897.6335020.21862242.117
    AVQdZ0.1250672.8488772156.1877.6237290.21942742.343
    AV5dZ0.1254612.8480672156.7377.6280670.21901142.232
    AV6dZ0.1256222.8477282157.0467.6298810.21884942.190
    CBS(Qd, 5d)0.1258012.8477822156.6027.6295930.21853442.112
    SA-AV6dZ0.1272642.8485312163.4487.6255810.21672541.893
    SOC-AV6dZ0.1265332.8483822164.0337.6263780.21788542.158
    Expe[12,34]0.1232032.8423382157.177.66030.209634.24
    Theory[16]0.1186652.8345902155.47.67860.208238.8
    Theory[18]0.1239822.8440392172.0
    Theory[21]0.1253172.8345902177.97.698436.7
    Theory[23]0.1249802.8421492154.37.66090.203235.0
    下载: 导出CSV

    表 3  SiH+(X1Σ+)离子在SOC-AV6dZ方法下, j = 0时的前23个振动能级G(v)、经典拐点和惯性转动常数Bv

    Table 3.  Vibrational levels G(v), classical turn point androtational constant Bv for SiH+(X1Σ+) when j = 0 at SOC-AV6dZ result.

    vG(v)/ cm–1Rmin(a0)Rmax(a0)Bv/ cm–1
    01074.4672.629813.111417.530487
    13171.2242.493473.338627.336827
    25200.5432.409843.515947.142529
    37162.2312.347563.674986.947281
    49055.7422.297613.825126.750433
    510880.1242.255953.970916.551101
    612634.0052.220313.915056.348250
    714315.6002.189344.260096.140735
    815922.7262.162134.407425.927312
    917452.8022.138034.558935.706603
    1018902.8352.116614.716505.477032
    1120269.3642.097524.882275.236702
    1221548.3632.080515.058884.983201
    1322735.0662.065405.249864.713296
    1423823.6942.052065.460164.422419
    1524807.0102.040415.697314.103776
    1625675.5992.030415.973793.746622
    1726416.6252.022086.312783.332604
    1827011.5792.015536.765452.826988
    1927432.5462.010967.483102.158867
    2027650.9562.008619.059751.323582
    2127734.4622.0077111.475530.838944
    2227769.2562.0073416.605760.360244
    下载: 导出CSV

    表 4  SiH+(X1Σ+)离子在SOC-AV6dZ方法下, j = 0时的前23个振动能级的6个离心畸变常数Dv, Hv, Lv, Mv, NvOv

    Table 4.  Six centrifugal distortion constants Dv, Hv, Lv, Mv, NvOv for the top 23 vibrational states of SiH+(X1Σ+) when j = 0 at SOC-AV6dZ result.

    vDv (× 10–4)Hv (× 10–8)LvMvNvOv
    0–3.77121021.4824556–9.1045 × 10–134.1069 × 10–17–2.4011 × 10–216.9631 × 10–26
    1–3.73620901.4243863–8.8032 × 10–133.5297 × 10–17–4.1863 × 10–211.8363 × 10–25
    2–3.70398651.3618539–8.9866 × 10–132.9262 × 10–17–5.1444 × 10–211.9171 × 10–25
    3–3.67786871.2884893–9.4914 × 10–132.3397 × 10–17–5.8593 × 10–219.6796 × 10–26
    4–3.66080931.2011917–1.0216 × 10–121.6648 × 10–17–6.8904 × 10–21–1.1678 × 10–25
    5–3.65530381.0982022–1.1140 × 10–126.8522 × 10–18–8.7371 × 10–21–4.8697 × 10–25
    6–3.66351990.9774540–1.2320 × 10–12–9.1302 × 10–18–1.2003 × 10–20–1.1229 × 10–24
    7–3.68756610.8351772–1.3901 × 10–12–3.5900 × 10–17–1.7702 × 10–20–2.2781 × 10–24
    8–3.72986130.6645057–1.6143 × 10–12–8.0925 × 10–17–2.7799 × 10–20–4.5064 × 10–24
    9–3.79361800.4536483–1.9481 × 10–12–1.5748 × 10–16–4.6321 × 10–20–9.0505 × 10–24
    10–3.88350551.8293995–2.4663 × 10–12–2.9088 × 10–16–8.1928 × 10–20–1.8869 × 10–23
    11–4.0066389–0.1804552–3.3026 × 10–12–5.3251 × 10–16–1.5445 × 10–19–4.1577 × 10–23
    12–4.1741837–0.6927552–4.7113 × 10–12–9.9426 × 10–16–3.1311 × 10–19–9.8710 × 10–23
    13–4.4041727–1.4546951–7.2135 × 10–12–1.9417 × 10–15–6.9300 × 10–19–2.5871 × 10–22
    14–4.7268845–2.6591579–1.1978 × 10–11–4.0783 × 10–15–1.7160 × 10–18–7.7417 × 10–22
    15–5.1961278–4.7106022–2.1959 × 10–11–9.5527 × 10–15–4.9431 × 10–18–2.7809 × 10–21
    16–5.9157772–8.5688303–4.5904 × 10–11–2.6336 × 10–14–1.7665 × 10–17–1.2991 × 10–20
    17–7.1117968–16.938203–1.1615 × 10–10–9.3420 × 10–14–8.7454 × 10–17–9.0301 × 10–20
    18–9.3643712–39.467832–3.9578 × 10–10–4.9264 × 10–13–7.1396 × 10–16–1.1444 × 10–18
    19–14.323856–114.68916–1.7949 × 10–9–3.4005 × 10–12–7.1696 × 10–15–1.6154 × 10–17
    20–18.399913–47.3241911.5501 × 10–9–7.5768 × 10–13–3.7548 × 10–14–1.9274 × 10–17
    21–14.637253–291.40012–2.0665 × 10–8–1.4452 × 10–10–1.3084 × 10–12–1.3806 × 10–14
    22–57.213156–20756.133–1.6655 × 10–5–1.7512 × 10–6–2.1241 × 10–7–2.8187 × 10–8
    下载: 导出CSV
  • [1]

    Grevesse N, Sauval A J 1970 Astron. Astrophys. 9 232

    [2]

    Douglas A E, Lutz B L 1970 Can. J. Phys. 48 247Google Scholar

    [3]

    Grevesse N, Sauval A J 1971a J. Quant. Spectrosc. Radiat. Transf. 11 65Google Scholar

    [4]

    Almeida A A, Sing P D 1978 Astrophys. Space Sci. 56 415Google Scholar

    [5]

    Gao W, Wang B B, Hu X J, Chai S, Han Y C, Greenwood J B 2017 Phys. Rev. A 96 013426Google Scholar

    [6]

    Wang B B, Han Y C, Gao W, Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926Google Scholar

    [7]

    Moore P L, Browne J C, Matsen F A 1965 J. Chem. Phys. 43 903Google Scholar

    [8]

    Cosby P C, Helm H, Moseley J T 1980 Astrophys. J. 235 52Google Scholar

    [9]

    Barinovs G, Hemert M C V 2006 Astrophys. J. 636 923Google Scholar

    [10]

    Ram R S, Engleman R, Bernath P F 1998 J. Mol. Spectrosc. 190 341Google Scholar

    [11]

    Singh P D, Vanlandingham F G 1978 Astron. Astrophys. 66 87Google Scholar

    [12]

    Carlson T A, Copley J, Duric N, Elander N, Erman P, Larsson M, Lyyra M 1980 Astron. Astrophys. 83 238

    [13]

    Hishikawa A, Karawajczyk A 1993 J. Mol. Spectrosc. 158 479Google Scholar

    [14]

    Davies P B, Martineau P M 1988 J. Chem. Phys. 88 485Google Scholar

    [15]

    Mosnier J P, Kennedy E T, Kampen P V, Cubaynes D, Guilbaud S, Sisourat N, Puglisi A, Carniato S, Bizau J M 2016 Phys. Rev. A 93 061401Google Scholar

    [16]

    Hirst D M 1986 Chem. Phys. Lett. 128 504Google Scholar

    [17]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Che. 8 61Google Scholar

    [18]

    Matos J M O, Kello V, Roos B O, Sadlej A J 1988 J. Chem. Phys. 89 423Google Scholar

    [19]

    Sannigrahi A B, Buenker R J, Hirsch G, Gu J P 1995 Chem. Phys. Lett. 237 204Google Scholar

    [20]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schutz M, et al. Molpro, A Package of ab initio Programs (Version 2015.1) http://www.molpro.net [2021-03-08]

    [21]

    Zhang Y G, Dou G, Cui J, Yu Y 2018 J. Mol. Struct. 1165 318Google Scholar

    [22]

    Neese F 2011 Wiley Interdisci. Rev. Comput. Mol. Sci. 2 73

    [23]

    Biglari Z, Shayesteh A, Ershadifar S 2018 J. Quant. Spectrosc. Radiat. Transf. 221 80Google Scholar

    [24]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schutz M, et al. Molpro, A Package of ab initio Programs (Version 2012.1) http://www.molpro.net [2021-03-08]

    [25]

    Aguado A, Paniagua M 1992 J. Chem. Phys. 96 1265Google Scholar

    [26]

    Aguado A, Tablero C, Paniagua M 1998 Comput. Phys. Commun. 108 259Google Scholar

    [27]

    Varandas A J C 2007 J. Chem. Phys. 126 244105Google Scholar

    [28]

    Varandas A J C 2000 J. Chem. Phys. 113 8880Google Scholar

    [29]

    Jansen H B, Ross P 1969 Chem. Phys. Lett. 3 140Google Scholar

    [30]

    Liu B, McLean A D 1973 J. Chem. Phys. 59 4557Google Scholar

    [31]

    Karton A, Martin J M L 2006 Theor. Chem. ACC. 115 330Google Scholar

    [32]

    Yang C L, Huang Y J, Zhang X, Han K L 2003 J. Mol. Struc. Theochem. 625 289Google Scholar

    [33]

    Yang C L, Zhang X, Han K L 2004 J. Mol. Struc. Theochem. 676 209Google Scholar

    [34]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. IV) (New York: Springer) p600

    [35]

    Roy R J L 2017 J. Quant. Spectrosc. Radiat. Transf. 186 167Google Scholar

  • [1] 刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮. 含自旋-轨道耦合的O-2光谱常数计算. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241435
    [2] 邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭. AlH分子10个Λ-S态和26个Ω态光谱性质的理论研究. 物理学报, 2023, 72(16): 163101. doi: 10.7498/aps.72.20230615
    [3] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋. BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 物理学报, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [4] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究. 物理学报, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [5] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [6] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [7] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [8] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 物理学报, 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [9] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [10] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [11] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [12] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [13] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [14] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [15] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [16] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [17] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [18] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [19] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 物理学报, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  5851
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-03-24
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回