搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于剪纸方法的一种可重构线极化转换空间序构超表面

王明照 王少杰 许河秀

引用本文:
Citation:

基于剪纸方法的一种可重构线极化转换空间序构超表面

王明照, 王少杰, 许河秀

Reconfigurable linear polarization conversion based on spatial-order kirigami metasurfaces

Wang Ming-Zhao, Wang Shao-Jie, Xu He-Xiu
PDF
HTML
导出引用
  • 随着智能技术的发展, 具有可调的电磁波极化转换器件对于实际应用来说至关重要. 目前大多数基于PIN二极管、变容二极管来实现电可调, 这些方法操作简单、实时性强, 但仍存在平面序构调控自由度少、电路复杂、成本较高等问题. 鉴于此, 本文提出了一种基于剪纸结构的可重构极化转换超表面, 通过调节折叠角度β改变磁偶极子之间的相互作用从而调谐极化转换工作频率, 这种机械调控方法带来了更多调控自由度, 且成本低廉、便于调控. 为验证本文剪纸方法的可行性, 基于非对称手性开口环谐振器设计了一款具有可重构空间序构的双频线极化转换超表面. 实验结果表明, 当β = 10°, 线极化转换器工作于5和5.8 GHz, 当β变化到45°时线极化转换器工作频段调谐到5.8和7.2 GHz, 平均频率调控范围达18.5%. 此外, 本文还分析了所提剪纸结构的泊松比和相对密度随β的变化规律, 泊松比随着β增大而增大, 且剪纸超表面的相对密度最小仅为未折叠情形下平面序构的1.5%. 本文空间序构剪纸超表面为可重构线极化转换、多功能器件提供了新思路和新方法.
    With the development of intelligent technology, it is essential to develop polarization-conversion devices with adaptable electromagnetic (EM) performance for practical applications. Up to now, most of attempts have relied on PIN diodes and varactor diodes for electrical tuning, typically featuring simplicity and timelineness. However, the shortcomings are also notable, such as less degrees of freedom (DoFs), more complex circuits and more expensive. In view of this, here we propose a kind of spatial-order metasurface for reconfigurable polarization conversion based on kirigami concept. By adjusting the folding angle β, the interaction between neighboring dipoles can be progressively changed and thus the operation frequency of polarization conversion can be shifted. Such a mechanical reconfigurable strategy brings about more DoFs for tuning and is cheaper and extraordinary convenient in practice. To verify the feasibility of our concept, a proof-of-concept spatial-order kirigami metasurface is proposed for the dual-band reconfigurable linear polarization conversion based on asymmetric chiral split ring resonators (SRRs). Experimental results show that the linear polarization operates at 5 and 5.8 GHz when folding angle is β = 10°, these frequencies are shifted to 5.8 and 7.2 GHz when β = 45°: a tuning range is expanded by 18.5%. In addition, the Poisson’s ratio and relative density of proposed kirigami metasurface as a function of β are also theoretically analyzed. The results show that the Poisson’s ratio increases with the value of β increasing. The relative density can be reduced to 1.5% of its unfolded planar counterpart. Our spatial-order kirigami metasurface strategy paves the way for implementing the reconfigurable linear polarization conversion and multifunctional devices.
      通信作者: 许河秀, hxxuellen@gmail.com
    • 基金项目: 中国科协军事青托计划(批准号: 17-JCJQ-QT-003)、国防科技项目基金(批准号: 2019-JCJQ-JJ-081)和陕西省自然科学基金重点项目(批准号: 2020JZ-33)资助的课题
      Corresponding author: Xu He-Xiu, hxxuellen@gmail.com
    • Funds: Project supported by the Youth Talent Lifting Project of the China Association for Science and Technology (Grant No. 17-JCJQ-QT-003), the National Defense Program of China (Grant No. 2019-JCJQ-JJ-081), and the Key Program of Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JZ-33)
    [1]

    梅中磊, 张黎, 崔铁军 2016 科技导报 34 27Google Scholar

    Mei Z L, Zhang L, Cui T J 2016 Science & Technology Review 34 27Google Scholar

    [2]

    王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar

    Wang Y Z, Xu H X, Wang C H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar

    [3]

    Xu H X, Sun S, Tang S, Ma S, He Q, Wang G M, Cai T, Li H P, Zhou L 2016 Sci. Rep. 6 27503Google Scholar

    [4]

    Xu H X, Ma S, Luo W, Cai T, Sun S, He Q, Zhou L 2016 Appl. Phys. Lett. 109 193506Google Scholar

    [5]

    Xu H X, Tang S, Ma S, Luo W, Cai T, Sun S, He Q, Zhou L 2016 Sci. Rep. 6 38255Google Scholar

    [6]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [7]

    Wang C, Xu H X, Wang Y, Zhu S, Wang C, Mao R 2020 J. Phys. D: Appl. Phys. 53 365001Google Scholar

    [8]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [9]

    李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 124102Google Scholar

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102Google Scholar

    [10]

    郭文龙, 王光明, 李海鹏, 侯海生 2016 物理学报 65 074101Google Scholar

    Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101Google Scholar

    [11]

    于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐 2018 物理学报 67 224101Google Scholar

    Yu H C, Cao X Y, Gao J, Yang H H, Han J F, Zhu X W, Li T 2018 Acta Phys. Sin. 67 224101Google Scholar

    [12]

    范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 物理学报 64 184101Google Scholar

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101Google Scholar

    [13]

    Wei Z, Cao Y, Fan Y, Yu X, Li H 2011 Appl. Phys. Lett. 99 221907Google Scholar

    [14]

    Feng M, Wang J, Ma H, Mo W, Ye H, Qu S 2013 J. Appl. Phys. 114 074508Google Scholar

    [15]

    Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M, Li Y 2014 J. Appl. Phys. 115 154504Google Scholar

    [16]

    Shi H, Zhang A, Zheng S, Li J, Jiang Y 2014 Appl. Phys. Lett. 104 034102Google Scholar

    [17]

    Yin J. Y, Wan X, Zhang Q, Cui T J 2015 Sci. Rep. 5 12476Google Scholar

    [18]

    Chen M, Chang L, Gao X, Chen H, Wang C, Xiao X, Zhao D 2017 IEEE Photonics J. 9 4601011

    [19]

    Yu Y, Xiao F, He C, Jin R, Zhu W 2020 Opt. Express. 28 11797Google Scholar

    [20]

    Wang M, Zhai Z 2020 Front. Phys. 8 527394Google Scholar

    [21]

    Kong X, Wang Q, Jiang S, Kong L, Yuan J, Yan X, Wang X, Zhao X 2020 Sci. Rep. 10 17843Google Scholar

    [22]

    Chambers B 1999 Smart Mater. Struct. 8 64Google Scholar

    [23]

    Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alù A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [24]

    Li L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [25]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. & Appl. 3 e218Google Scholar

    [26]

    Tian J, Cao X, Gao J, Yang H, Han J, Yu H, Wang S, Jin R, Li T 2019 J. Appl. Phys. 125 135105Google Scholar

    [27]

    Zhang X G, Jiang W X, Jiang H L, Wang Q, Tian H W, Bai L, Luo Z J, Sun S, Luo Y, Qiu C W, Cui T J 2020 Nat. Electron. 3 165Google Scholar

    [28]

    Jiang W, Ma H, Feng M, Yan L, Wang J, Wang J, Qu S 2016 J. Phys. D: Appl. Phys. 49 315302Google Scholar

    [29]

    Jing L, Wang Z, Zheng B, Wang H, Yang Y, Shen L, Yin W, Li E, Chen H 2018 NPG Asia Mater. 10 888Google Scholar

    [30]

    Wang Z, Jing L, Yao K, Yang Y, Zheng B, Soukoulis C M, Chen H, Liu Y 2017 Adv. Mater. 29 1700412Google Scholar

    [31]

    Li M, Shen L, Jing L, Xu S, Zheng B, Lin X, Yang Y, Wang Z, Chen H 2019 Adv. Sci. 6 1901434Google Scholar

    [32]

    Le D H, Xu Y, Tentzeris M M, Lim S 2020 Extreme Mech. Lett. 36 100670Google Scholar

  • 图 1  本文基于可重构空间序构剪纸超表面的双频线极化转换功能示意图(k代表波矢量方向, fm, fn代表线极化转换的工作频率. 二维超表面按照剪裁线裁成条带结构, 条带结构再按照折叠线折叠可形成本文空间序构超表面, 然后通过改变折叠角度β可调谐fm)

    Fig. 1.  Schematic diagram of the dual-band linear polarization conversion based on reconfigurable spatial-order kirigami metasurfaces. Here, k represents the wave vector, and fm, fn represent the operation frequency of cross-polarization conversion. The spatial-order metasurface is constructed by cutting a two-dimensional metasurface into a sets of strips according to the cutting line, and then by folding these strips according to the folding line to form an assembled structure. The fm of resulting metasurface can be adjusted by changing the folding angle β.

    图 2  本文可重构空间序构剪纸超表面的线极化转换与频率调控原理示意图. u-v坐标系下的(a) y极化入射电磁波与(b) x极化反射电磁波; (c)任意两个空间放置磁偶极子的相互作用; (d)两个磁偶极子同向纵向耦合

    Fig. 2.  Schematic principle for linear polarization conversion and operation frequency control of reconfigurable spatial-order kirigami metasurfaces. The (a) incident y-polarized and (b) reflected x-polarized electromagnetic (EM) waves under u-v coordinate. (c) The interaction between two magnetic dipoles placed in free space. (d) The longitudinally coupled magnetic dipoles in identical direction respectively.

    图 3  三种不同情形下空间序构超表面单元的结构与数值仿真电磁特性(其中${\varphi _u}$(${\varphi _v}$)和ru(rv)分别表示沿u(v)轴方向电场分量反射相位和反射幅度, ${r_{yy}}$(${r_{xx}}$)表示y(x)极化波入射时同极化反射电磁波的幅度, ${r_{xy}}$(${r_{yx}}$)表示y(x)极化波入射时交叉极化反射电磁波的幅度) (a)单元只有开口圆环谐振器; (b)单元只有开口方环谐振器; (c)单元同时包含开口圆环和开口方环谐振器; (d)谐振频率f = 6.8和5.5 GHz处超表面单元SRRs上的表面电流分布; (e)最终空间序构超表面单元的结构, 结构参数依次为m = 18 mm, n = 6.7 mm, d = 0.1 mm, r2 = 3 mm, r1 = r2 b1 = 2.4 mm, a1 = 6 mm, a2 = a1 – 2b2 = 4.8 mm和g = 0.44 mm, 黄色部分为金属铜, 蓝色部分为介质板, 介质板采为聚酰亚胺板, 介电常数为3.0, 电正切损耗为0.001

    Fig. 3.  Layout and numerical characterizations of the spatial-order meta-atoms in three different situations of (a) only circular SRRs along left slope, (b) square SRRs along right slope, and (c) both circular and square SRRs along both slopes. Here, ${\varphi _u}$(${\varphi _v}$) and ru (rv) represent the reflection phase and amplitude for components along u(v) axis, ${r_{yy}}$(${r_{xx}}$) represent the reflection amplitude of the incident y(x)-polarized and reflected y(x)-polarized EM waves, ${r_{xy}}$(${r_{yx}}$) represent the reflection amplitude of the incident y(x)-polarized and reflected x(y)-polarized EM waves. (d) The Surface current distribution on SRRs at resonant frequencies of f = 6.8 and 5.5 GHz. (e) Layout and geometrical parameters of the finally designed spatial-order meta-atom. They are m = 18 mm, n = 6.7 mm, d = 0.1 mm, r2 = 3 mm, r1 = r2 b1 = 2.4 mm, a1 = 6 mm, a2 = a1 – 2b2 = 4.8 mm and g = 0.44 mm. The yellow color indicates metallic copper while blue represents dielectric slab, which is a FR4 board with dielectric constant of 3.0 and tangent loss of 0.001.

    图 4  最终设计的空间序构超表面单元在不同宽度开口圆环和方环谐振器的电磁波反射幅度仿真结果 (a) y极化和(b) x极化平面电磁波入射时的反射幅度随开口圆环宽度b1变化的关系; (c) y极化和(d) x极化平面电磁波入射时的反射幅度随开口方环宽度b2变化的关系

    Fig. 4.  Finite-difference time-domain (FDTD) calculated reflection amplitude of the finally designed spatial-order meta-atom based on circular SRRs and square SRRs for different widths. Reflection amplitude as a function of (a), (b) b1 and (c), (d) b2 under (a), (c) y-polarized and (b), (d) x-polarized plane wave of normal incidence.

    图 5  最终设计空间序构超表面的电磁波反射幅度在不同折叠角度β下的仿真结果 (a), (b) y极化与(c), (d) x极化平面电磁波入射时的反射幅度

    Fig. 5.  FDTD calculated reflection amplitude of EM waves of the finally designed spatial-order metasurfaces at different folding angles β: the reflection amplitude of the incident (a), (b) y-polarized and (c), (d) x-polarized EM waves.

    图 6  实验表征及不同极化入射下的测试同极化和交叉极化系数幅度频谱 (a)样品制作过程; (b)实验测试环境; (c) y极化波入射与(d) x极化波入射时电磁波在不同折叠角度下的反射幅度

    Fig. 6.  Experimental characterization and measured co-polarization and cross-polarization reflection amplitude spectrum under different polarizations: (a) The fabrication process of sample; (b) experimental setup; reflection amplitude at different folding angle β under (c) y-polarized and (d) x-polarized EM waves.

    图 7  最终设计的空间序构超表面在不同折叠角度下的(a)泊松比和(b)相对密度

    Fig. 7.  (a) Poisson’s ratio and (b) relative density of the finally designed spatial-order metasurfaces as a function of different folding angles.

  • [1]

    梅中磊, 张黎, 崔铁军 2016 科技导报 34 27Google Scholar

    Mei Z L, Zhang L, Cui T J 2016 Science & Technology Review 34 27Google Scholar

    [2]

    王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar

    Wang Y Z, Xu H X, Wang C H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar

    [3]

    Xu H X, Sun S, Tang S, Ma S, He Q, Wang G M, Cai T, Li H P, Zhou L 2016 Sci. Rep. 6 27503Google Scholar

    [4]

    Xu H X, Ma S, Luo W, Cai T, Sun S, He Q, Zhou L 2016 Appl. Phys. Lett. 109 193506Google Scholar

    [5]

    Xu H X, Tang S, Ma S, Luo W, Cai T, Sun S, He Q, Zhou L 2016 Sci. Rep. 6 38255Google Scholar

    [6]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [7]

    Wang C, Xu H X, Wang Y, Zhu S, Wang C, Mao R 2020 J. Phys. D: Appl. Phys. 53 365001Google Scholar

    [8]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [9]

    李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 124102Google Scholar

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102Google Scholar

    [10]

    郭文龙, 王光明, 李海鹏, 侯海生 2016 物理学报 65 074101Google Scholar

    Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101Google Scholar

    [11]

    于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐 2018 物理学报 67 224101Google Scholar

    Yu H C, Cao X Y, Gao J, Yang H H, Han J F, Zhu X W, Li T 2018 Acta Phys. Sin. 67 224101Google Scholar

    [12]

    范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 物理学报 64 184101Google Scholar

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101Google Scholar

    [13]

    Wei Z, Cao Y, Fan Y, Yu X, Li H 2011 Appl. Phys. Lett. 99 221907Google Scholar

    [14]

    Feng M, Wang J, Ma H, Mo W, Ye H, Qu S 2013 J. Appl. Phys. 114 074508Google Scholar

    [15]

    Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M, Li Y 2014 J. Appl. Phys. 115 154504Google Scholar

    [16]

    Shi H, Zhang A, Zheng S, Li J, Jiang Y 2014 Appl. Phys. Lett. 104 034102Google Scholar

    [17]

    Yin J. Y, Wan X, Zhang Q, Cui T J 2015 Sci. Rep. 5 12476Google Scholar

    [18]

    Chen M, Chang L, Gao X, Chen H, Wang C, Xiao X, Zhao D 2017 IEEE Photonics J. 9 4601011

    [19]

    Yu Y, Xiao F, He C, Jin R, Zhu W 2020 Opt. Express. 28 11797Google Scholar

    [20]

    Wang M, Zhai Z 2020 Front. Phys. 8 527394Google Scholar

    [21]

    Kong X, Wang Q, Jiang S, Kong L, Yuan J, Yan X, Wang X, Zhao X 2020 Sci. Rep. 10 17843Google Scholar

    [22]

    Chambers B 1999 Smart Mater. Struct. 8 64Google Scholar

    [23]

    Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alù A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [24]

    Li L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [25]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. & Appl. 3 e218Google Scholar

    [26]

    Tian J, Cao X, Gao J, Yang H, Han J, Yu H, Wang S, Jin R, Li T 2019 J. Appl. Phys. 125 135105Google Scholar

    [27]

    Zhang X G, Jiang W X, Jiang H L, Wang Q, Tian H W, Bai L, Luo Z J, Sun S, Luo Y, Qiu C W, Cui T J 2020 Nat. Electron. 3 165Google Scholar

    [28]

    Jiang W, Ma H, Feng M, Yan L, Wang J, Wang J, Qu S 2016 J. Phys. D: Appl. Phys. 49 315302Google Scholar

    [29]

    Jing L, Wang Z, Zheng B, Wang H, Yang Y, Shen L, Yin W, Li E, Chen H 2018 NPG Asia Mater. 10 888Google Scholar

    [30]

    Wang Z, Jing L, Yao K, Yang Y, Zheng B, Soukoulis C M, Chen H, Liu Y 2017 Adv. Mater. 29 1700412Google Scholar

    [31]

    Li M, Shen L, Jing L, Xu S, Zheng B, Lin X, Yang Y, Wang Z, Chen H 2019 Adv. Sci. 6 1901434Google Scholar

    [32]

    Le D H, Xu Y, Tentzeris M M, Lim S 2020 Extreme Mech. Lett. 36 100670Google Scholar

  • [1] 王哲飞, 吴杰, 万发雨, 曾庆生, 侯建强, 傅佳辉, 吴群, 宋明歆, TayebA. Denidni. 基于类电磁诱导透明效应的极化转换滤波器. 物理学报, 2024, 73(18): 188101. doi: 10.7498/aps.73.20240632
    [2] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军. 编码超构表面实现双波束独立可重构. 物理学报, 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [6] 高强, 李小秋, 周志鹏, 孙磊. 基于分形谐振器的远场超分辨率扫描成像. 物理学报, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [7] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [8] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [9] 马明宇, 吴晗, 陈卓. 金属开口环谐振器超构分子中二次谐波偏振态的调控. 物理学报, 2019, 68(21): 214205. doi: 10.7498/aps.68.20190837
    [10] 于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐. 一种宽带可重构反射型极化旋转表面. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [11] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [12] 庄亚强, 王光明, 张小宽, 张晨新, 蔡通, 李海鹏. 基于梯度超表面的反射型线-圆极化转换器设计. 物理学报, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [13] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇. 基于发卡式开口谐振环的柔性双频带超材料. 物理学报, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [14] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [15] 陈春晖, 屈绍波, 王甲富, 马华, 徐卓, 何花. 连通的开口和闭口谐振环构成的磁超材料设计. 物理学报, 2011, 60(8): 084104. doi: 10.7498/aps.60.084104
    [16] 王甲富, 屈绍波, 徐卓, 张介秋, 马华, 杨一鸣, 顾超. 基于双环开口谐振环对的平面周期结构左手超材料. 物理学报, 2009, 58(5): 3224-3229. doi: 10.7498/aps.58.3224
    [17] 张富利, 赵晓鹏. 谐振频率可调的环状开口谐振器结构及其效应. 物理学报, 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
    [18] 李宏成, 王瑞兰, 魏斌. 介质谐振器法测量高温超导薄膜微波表面电阻的误差分析. 物理学报, 2001, 50(5): 938-941. doi: 10.7498/aps.50.938
    [19] 黄国翔, 颜家壬, 戴显熹. 矩形谐振器中非传播重力-表面张力孤波的理论研究. 物理学报, 1990, 39(8): 52-60. doi: 10.7498/aps.39.52
    [20] 吴君汝, A. LARRAZA, I. RUDNICK. 水表面波矩型谐振器非线性共振曲线的测量. 物理学报, 1985, 34(6): 796-800. doi: 10.7498/aps.34.796
计量
  • 文章访问数:  7217
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 修回日期:  2021-02-17
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回