搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

编码超构表面实现双波束独立可重构

张娜 赵健民 陈克 赵俊明 姜田 冯一军

引用本文:
Citation:

编码超构表面实现双波束独立可重构

张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军

Independent dual-beam control based on programmable coding metasurface

Zhang Na, Zhao Jian-Min, Chen Ke, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun
PDF
HTML
导出引用
  • 近年来, 有源超构表面因其对电磁波的灵活、动态调控而备受关注. 本文设计并分析了一种有源可编程超构表面单元, 并探讨了其在双波束、多波束独立可重构方面的应用. 理论分析了如何实现对称双波束、非对称双波束电磁波辐射以及多波束独立可重构, 并对所设计的编码超构表面进行仿真分析和实验验证. 全波仿真结果表明, 超构表面具有较好的辐射性能, 主瓣辐射方向与理论计算结果一致. 作为实验验证, 我们加工了样品并在标准微波暗室中进行了测试. 实验测试与仿真分析结果吻合良好, 均表明该超构表面在微波频率能够对双波束进行独立的动态调控, 且波束方向性较好. 因而, 这种可编程超构表面有望进一步实现多通道信息传输, 并在无线通信系统中具有良好的应用前景.
    Programmable metasurfaces incorporating with tunable materials or components are emerging as an attractive option to realize reconfigurable manipulations of electromagnetic (EM) behaviors in real-time. Many efforts have been devoted to the realization of active EM manipulations of the metasurface and significant progress has been achieved, showing their unprecedented ability to arbitrarily manipulate wavefronts in dynamic functions. However, most of the existing multi-beam metasurfaces are based on passive building blocks, only possessing one or a few functions, which cannot provide tunable and independent multi-beam control, thus limiting their further uses in wireless communications. Hence, a 1-bit coding metasurface with high-efficiency, programmable, and independent multi-beam control is proposed in this paper, providing dynamic EM responses with real-time reconfigurability, and controlled by external digital circuits through direct current (DC) bias networks. Specifically, the meta-atom loaded with PIN diodes is employed to achieve independently tunable phase characteristics, thus complex EM functions can be manipulated by redistributing the spatial phases of the metasurface. Symmetric/asymmetric independent dual- and multi-beam manipulations are analyzed theoretically and simulated by EM software. Then as an experimental verification, a metasurface consisting of 14 × 14 meta-atoms is fabricated and tested in a standard microwave anechoic chamber, and the measured results accord well with the simulations. The proposed metasurface has promising ability to generate the arbitrary and independent multi-beams, which may largely enhance the information capacity of the metasurfaces, offering untapped potentials in wireless communication systems.
      通信作者: 陈克, ke.chen@nju.edu.cn ; 冯一军, yjfeng@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0700201)、国家自然科学基金(批准号: 61801207, 91963128, 61731010)、中央高校基本科研业务费和江苏省电磁波先进调控技术重点实验室资助的课题.
      Corresponding author: Chen Ke, ke.chen@nju.edu.cn ; Feng Yi-Jun, yjfeng@nju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0700201), the National Natural Science Foundation of China (Grant Nos. 61801207, 91963128, 61731010), the Fundamental Research Funds for the Central Universities, China, and the Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves, China.
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Ding G W, Chen K, Luo X Y, Zhao J M, Jiang T, Feng Y J 2019 Phys. Rev. Appl. 11 044043Google Scholar

    [3]

    Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223Google Scholar

    [4]

    Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light: Sci. Appl. 5 e16076Google Scholar

    [5]

    Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Tsai D P, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Opt. Mater. 6 1800728Google Scholar

    [6]

    Chen K, Cui L, Feng Y, Zhao J, Jiang T, Zhu B 2017 Opt. Express 25 5571Google Scholar

    [7]

    Chen K, Feng Y, Yang Z, Cui L, Zhao J, Zhu B, Jiang T 2016 Sci. Rep. 6 35968Google Scholar

    [8]

    Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [9]

    Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225Google Scholar

    [10]

    Yang H H, Yang F, Cao X Y, Xu S H, Gao J, Chen X B, Li T 2017 IEEE Trans. Antennas Propag. 65 6Google Scholar

    [11]

    Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y, Feng Y J 2021 IEEE Trans. Antennas Propag. 69 6Google Scholar

    [12]

    Luo X 2019 Adv. Mater. 31 e1804680Google Scholar

    [13]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 6 1800415Google Scholar

    [14]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G-Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [15]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218Google Scholar

    [16]

    Della Giovampaola C, Engheta N 2014 Nat. Mater. 13 1115Google Scholar

    [17]

    Kim M, Jeong J, Poon J K S, Eleftheriades G V 2016 J. Opt. Soc. Am. B: Opt. Phys. 33 980Google Scholar

    [18]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 物理学报 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

    [19]

    Cui T J, Liu S, Li L L 2016 Light Sci. Appl. 5 e16172Google Scholar

    [20]

    Li Y, Lin J, Guo H, Sun W, Xiao S, Zhou L 2020 Adv. Opt. Mater. 8 1901548Google Scholar

    [21]

    Luo Z, Chen M Z, Wang Z X, Zhou L, Li Y B, Cheng Q, Ma H F, Cui T J 2019 Adv. Funct. Mater. 29 1906635Google Scholar

    [22]

    Bai X, Kong F, Sun Y, Wang G, Qian J, Li X, Cao A, He C, Liang X, Jin R, Zhu W 2020 Adv. Opt. Mater. 8 2000570Google Scholar

    [23]

    Li H, Ma C, Ye D, Sun Y, Zhu W, Li C, Ran L 2018 IEEE Trans. Antennas Propag. 66 4Google Scholar

    [24]

    Nayeri P, Yang F, Z. Elsherbeni A 2012 IEEE Trans. Antennas Propag. 60 2Google Scholar

    [25]

    Martinez-de-Rioja E, A. Encinar J, Florencio R, Tienda C 2019 IEEE Trans. Antennas Propag. 67 1Google Scholar

    [26]

    Chou H T, Lertwiriyaprapa T, Akkaraekthalin P, Torrungrueng D 2020 IEEE Trans. Antennas Propag. 68 6Google Scholar

    [27]

    Somolinos A, Florencio R, González I, A. Encinar J, Cátedra F 2019 IEEE Trans. Antennas Propag. 67 6Google Scholar

    [28]

    Ding G, Chen K, Qian G, Zhao J, Jiang T, Feng Y, Wang Z 2020 Adv. Opt. Mater. 8 2000342Google Scholar

  • 图 1  (a) 超构表面单元结构示意图; (b)单元顶层金属结构示意图; (c)单元中间层金属结构示意图; (d)单元底层金属结构示意图; (e) 单元结构反射相位曲线; (f) 单元结构反射幅度曲线

    Fig. 1.  (a) Schematic of the coding metasurface elements; (b) schematic of the top-layer of metal structure; (c) schematic of the middle-layer of metal structure; (d) schematic of the bottom-layer of metal structure; (e) reflection phases of the elements; (f) reflection amplitudes of the elements.

    图 2  (a) 超构表面波束调控示意图; (b) 双波束(30º, 0º)和(20º, 180º)离散相位分布图; (c) 双波束(30º, 0º)和(20º, 180º)u-v平面归一化远场方向图($ u=\mathrm{sin}\theta \mathrm{cos}\phi , v=\mathrm{sin}\theta \mathrm{sin}\phi $)

    Fig. 2.  (a) Schematic of the metasurface for three-dimension beam-control; (b) the calculated discretized phase distributions for the radiation directions of (30º, 0º) and (20º, 180º); (c) the calculated normalized radiation patterns in uv-plane ($ u=\mathrm{sin}\theta \mathrm{cos}\phi $, $ v=\mathrm{sin}\theta \mathrm{sin}\phi $).

    图 3  (a) 超构表面在xoz-平面实现对称双波束扫描功能示意图; (b) 超构表面在yoz-平面实现对称双波束扫描功能示意图; (c) 超构表面在xoz-平面上的远场仿真结果; (d) 超构表面在yoz-平面上的远场仿真结果

    Fig. 3.  (a) Schematic of the symmetric-beam scanning of the metasurface in xoz-plane; (b) schematic of the symmetric-beam scanning of the metasurface in yoz-plane; (c) the simulated radiation patterns of the metasurface in xoz-plane; (d) the simulated radiation patterns of the metasurface in yoz-plane.

    图 4  超构表面非对称波束设计的远场仿真结果图. 波束辐射方向 (θ, φ)依次为 (a) (20º, 0º), (20º, 90º); (b) (19º, 180º), (30º, 270º); (c) (30º, 0º), (20º, 180º); (d) (0º, 0º), (11º, 0º); (e) (19º, 180º), (9º, 180º), (11º, 0º); (f) (28º, 180º), (5º, 0º), (32º, 0º)

    Fig. 4.  The simulated three-dimension radiation patterns of asymmetric-beam control of the metasurface. The radiation angles (θ, φ) are: (a) (20º, 0º), (20º, 90º); (b) (19º, 180º), (30º, 270º); (c) (30º, 0º), (20º, 180º); (d) (0º, 0º), (10º, 0º); (e) (19º, 180º), (9º, 180º), (11º, 0º); (f) (28º, 180º), (5º, 0º), (32º, 0º), respectively.

    图 5  (a) 超构表面样品图; (b)−(i) 超构表面独立波束设计远场测试结果图. 超构表面实现对称双波束扫描功能的测试结果图, 分别在 (b) xoz-平面与(c) yoz-平面; 超构表面非对称独立波束设计的测试结果图, 波束辐射方向 (θ, φ)依次为 (d) (20º, 0º), (20º, 90º); (e) (19º, 180º), (30º, 270º); (f) (30º, 0º), (20º, 180º); (g) (0º, 0º), (11º, 0º); (h) (19º, 180º), (9º, 180º), (11º, 0º); (i) (28º, 180º), (5º, 0º), (32º, 0º)

    Fig. 5.  (a) Photograph of the fabricated metasurface; (b)−(i) the measurement results of the metasurface. measurement results of symmetric-beam scanning in (b) xoz-plane and (c) yoz-plane; measurement results of asymmetric-beam control of the metasurface, and the radiation angles (θ, φ) are (d) (20º, 0º), (20º, 90º); (e) (19º, 180º), (30º, 270º); (f) (30º, 0º), (20º, 180º); (g) (0º, 0º), (11º, 0º); (h) (19º, 180º), (9º, 180º), (11º, 0º); (i) (28º, 180º), (5º, 0º), (32º, 0º), respectively.

  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Ding G W, Chen K, Luo X Y, Zhao J M, Jiang T, Feng Y J 2019 Phys. Rev. Appl. 11 044043Google Scholar

    [3]

    Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223Google Scholar

    [4]

    Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light: Sci. Appl. 5 e16076Google Scholar

    [5]

    Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Tsai D P, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Opt. Mater. 6 1800728Google Scholar

    [6]

    Chen K, Cui L, Feng Y, Zhao J, Jiang T, Zhu B 2017 Opt. Express 25 5571Google Scholar

    [7]

    Chen K, Feng Y, Yang Z, Cui L, Zhao J, Zhu B, Jiang T 2016 Sci. Rep. 6 35968Google Scholar

    [8]

    Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [9]

    Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225Google Scholar

    [10]

    Yang H H, Yang F, Cao X Y, Xu S H, Gao J, Chen X B, Li T 2017 IEEE Trans. Antennas Propag. 65 6Google Scholar

    [11]

    Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y, Feng Y J 2021 IEEE Trans. Antennas Propag. 69 6Google Scholar

    [12]

    Luo X 2019 Adv. Mater. 31 e1804680Google Scholar

    [13]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 6 1800415Google Scholar

    [14]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G-Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [15]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218Google Scholar

    [16]

    Della Giovampaola C, Engheta N 2014 Nat. Mater. 13 1115Google Scholar

    [17]

    Kim M, Jeong J, Poon J K S, Eleftheriades G V 2016 J. Opt. Soc. Am. B: Opt. Phys. 33 980Google Scholar

    [18]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 物理学报 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

    [19]

    Cui T J, Liu S, Li L L 2016 Light Sci. Appl. 5 e16172Google Scholar

    [20]

    Li Y, Lin J, Guo H, Sun W, Xiao S, Zhou L 2020 Adv. Opt. Mater. 8 1901548Google Scholar

    [21]

    Luo Z, Chen M Z, Wang Z X, Zhou L, Li Y B, Cheng Q, Ma H F, Cui T J 2019 Adv. Funct. Mater. 29 1906635Google Scholar

    [22]

    Bai X, Kong F, Sun Y, Wang G, Qian J, Li X, Cao A, He C, Liang X, Jin R, Zhu W 2020 Adv. Opt. Mater. 8 2000570Google Scholar

    [23]

    Li H, Ma C, Ye D, Sun Y, Zhu W, Li C, Ran L 2018 IEEE Trans. Antennas Propag. 66 4Google Scholar

    [24]

    Nayeri P, Yang F, Z. Elsherbeni A 2012 IEEE Trans. Antennas Propag. 60 2Google Scholar

    [25]

    Martinez-de-Rioja E, A. Encinar J, Florencio R, Tienda C 2019 IEEE Trans. Antennas Propag. 67 1Google Scholar

    [26]

    Chou H T, Lertwiriyaprapa T, Akkaraekthalin P, Torrungrueng D 2020 IEEE Trans. Antennas Propag. 68 6Google Scholar

    [27]

    Somolinos A, Florencio R, González I, A. Encinar J, Cátedra F 2019 IEEE Trans. Antennas Propag. 67 6Google Scholar

    [28]

    Ding G, Chen K, Qian G, Zhao J, Jiang T, Feng Y, Wang Z 2020 Adv. Opt. Mater. 8 2000342Google Scholar

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] 黄帅, 吴天昊, 管春生, 丁旭旻, 吴昱明, 吴群, 唐晓斌. 波导谐振腔集成馈电型波前调控 惠更斯超表面研究. 物理学报, 2022, 71(22): 224101. doi: 10.7498/aps.71.20221284
    [3] 李顺, 李正军, 屈檀, 李海英, 吴振森. 双零阶贝塞尔波束的传播及对单轴各向异性球的散射特性. 物理学报, 2022, 71(18): 180301. doi: 10.7498/aps.71.20220491
    [4] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [5] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强. 含双曲超构材料的复合周期结构的带隙调控及应用. 物理学报, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [6] 宋忠长, 张宇, 魏翀, 杨武夷, 徐晓辉. 齿鲸生物声呐发射特性与波束调控研究. 物理学报, 2020, 69(15): 154301. doi: 10.7498/aps.69.20200406
    [7] 吕晏旻, 闵富红. 基于现场可编程逻辑门阵列的磁控忆阻电路对称动力学行为分析. 物理学报, 2019, 68(13): 130502. doi: 10.7498/aps.68.20190453
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] 韩秀峰, 万蔡华. 一种数据非易失性、多功能和可编程的自旋逻辑研究进展. 物理学报, 2018, 67(12): 127201. doi: 10.7498/aps.67.20180906
    [10] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [11] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [12] 杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎. 双频双波束加热电离层激发甚低频/极低频辐射理论分析. 物理学报, 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [13] 韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学. 基于微波表面等离激元的360电扫描多波束天线. 物理学报, 2016, 65(14): 147301. doi: 10.7498/aps.65.147301
    [14] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [15] 邵书义, 闵富红, 吴薛红, 张新国. 基于现场可编程逻辑门阵列的新型混沌系统实现. 物理学报, 2014, 63(6): 060501. doi: 10.7498/aps.63.060501
    [16] 潘晶, 齐娜, 薛兵兵, 丁群. 基于现场可编程门阵列的手机短信息混沌加密系统设计方案及硬件实现. 物理学报, 2012, 61(18): 180504. doi: 10.7498/aps.61.180504
    [17] 高博, 余学峰, 任迪远, 李豫东, 崔江维, 李茂顺, 李明, 王义元. 静态存储器型现场可编程门阵列总剂量辐射损伤效应研究. 物理学报, 2011, 60(3): 036106. doi: 10.7498/aps.60.036106
    [18] 韩国霞, 韩一平. 双球粒子对任意入射单波束及双波束的散射. 物理学报, 2010, 59(4): 2434-2442. doi: 10.7498/aps.59.2434
    [19] 周武杰, 禹思敏. 基于现场可编程门阵列技术的混沌数字通信系统——设计与实现. 物理学报, 2009, 58(1): 113-119. doi: 10.7498/aps.58.113
    [20] 周武杰, 禹思敏. 基于IEEE-754标准和现场可编程门阵列技术的混沌产生器设计与实现. 物理学报, 2008, 57(8): 4738-4747. doi: 10.7498/aps.57.4738
计量
  • 文章访问数:  7382
  • PDF下载量:  401
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-04-12
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回