搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构超构表面实现L波段波束动态调控及信息调制

许一帆 邓烨 佟琬婷 王海峰 王学运 赵俊明 姜田 张升康 陈克 冯一军

引用本文:
Citation:

可重构超构表面实现L波段波束动态调控及信息调制

许一帆, 邓烨, 佟琬婷, 王海峰, 王学运, 赵俊明, 姜田, 张升康, 陈克, 冯一军

Reconfigurable metasurface achieved dynamic beam control and information modulation of L-band beams

XU Yifan, DENG Ye, TONG Wanting, WANG Haifeng, WANG Xueyun, ZHAO Junming, JIANG Tian, ZHANG Shengkang, CHEN Ke, FENG Yijun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文提出一种工作在L波段的宽带可重构转极化超构表面设计方法, 并实现了二进制幅移键控(binary amplitude shift keying, BASK)和二进制相移键控(binary phase shift keying, BPSK)两种调制方式的超构表面信息直接调制. 通过控制超构表面单元结构上的开关二极管通断状态, 可在1.17—1.66 GHz频段改变单元的转极化反射幅值和相位, 并通过对其幅相分布特性的实时编码实现波束调控与信息调制. 在此基础上, 构建了基于BASK和BPSK两种调制方式的超构表面新型无线通信系统, 实现了对数字信息的实时调制与传输. 本文提出的超构表面及其设计方法有望在信息传输、卫星通信等应用中发挥作用.
    In this paper, a method of designing broadband reconfigurable polarization-converting metasurface operating in L-band is proposed. This method can also be used to directly modulate the information by using two modulation modes: binary amplitude shift keying (BASK) and binary phase shift keying (BPSK). Switching the ' ON/OFF state of PIN diode can be used to modify the amplitude and phase responses of the cross-polarized reflection of the element in a frequency band of 1.17–1.66 GHz, thereby creating a 1-bit digital coding meta-atom. By changing the real-time coding patterns of amplitude and phase, the reconfigurable metasurface can control beams and information modulation. Simulation results show that by changing the coding patterns of the metasurface, twin-beams and four-beams with different reflection angles can be obtained which fully validates the control ability of dynamic far-field beam. As an experimental verification, a reconfigurable metasurface consisting of 10×10 meta-atoms is fabricated, and its beam control and information modulation functions are tested. The far-field patterns of the metasurface with different coding phase distributions are measured. Furthermore, modulation signals of varying high/low voltage levels and rates are loaded onto the metasurface, in order to control its modulation mode and rate. The modulated signals reflected from metasurface are captured by a high-speed radio-frequency (RF) oscilloscope at varying rates and reflection angles, and then demodulated so as to recover the original information. On this basis, a metasurface wireless communication system based on BASK and BPSK is constructed to transmit digital image information in a real-world environment. In the experiment, the image is first represented by a sequence of '0' and '1' bits, corresponding to the operational state sequence of the metasurface used for transmitting information. The field programmable gate array (FPGA) is then used to generate signals with high and low voltage levels in real time according to the sequence of working states of the metasurface, and to modulate the carrier signal irradiated onto the metasurface. Therefore, the signal is converted into a modulated signal and received by the antenna. Finally, the signal is demodulated by the universal software radio peripheral (USRP) and transmitted to the terminal equipment, yielding the constellation diagrams and enabling the recovering of the images. The image information recovered under both modulation schemes verifies that the system can achieve real-time modulation and transmission of digital information. The proposed metasurface and the design method may be used in many fields, such as satellite communications and digital broadcasting.
  • 图 1  单元结构示意图

    Fig. 1.  Schematic of the metasurface element.

    图 2  两种工作状态下对应的单元电场分布, 其中“$ + $”和“$ - $”分别代表导通二极管的正负极

    Fig. 2.  Electric field distributions of the metasurface element with two different working states, the “$ + $” and “$ - $” note the positive and negative terminals of the conducting diodes.

    图 3  相位可重构模式下, 超构表面单元的幅相响应 (a) “P0” 和“P1”状态的幅度响应; (b) “P0”和“P1”状态的相位响应

    Fig. 3.  Amplitude and phase responses of the element operating at phase-reconfigurable mode: (a) Amplitude response of states “P0” and “P1”; (b) phase response of states “P0” and “P1”.

    图 4  幅度可重构模式下, 超构表面单元的幅相响应 (a) “A0” 和“A1”状态的幅度响应; (b) “A0” 和“A1”状态的相位响应

    Fig. 4.  Amplitude and phase responses of the element operating at amplitude-reconfigurable mode: (a) Amplitude response of states “P0” and “P1”; (b) phase response of states “P0” and “P1”.

    图 5  波束调控仿真分析结果图, 左侧图为相位编码及其三维散射方向图, 右侧图为波束切面的二维方向图 (a) 20.5°对称双波束的仿真与测试结果; (b) 28.4°对称双波束的仿真与测试结果; (c) 30.8°对称四波束仿真结果

    Fig. 5.  Simulation results of the beams control, left panels show the phase coding pattern on the metasurface and the 3D scattering pattern, while the right panels show the 2D scattering pattern of the beam: (a) Simulation and measurement results of twin-beam with titling angle of 20.5°; (b) simulation and measurement results of twin-beam with titling angle of 28.4°; (c) four beams with titling angle 30.8°.

    图 6  实验测试示意图

    Fig. 6.  Schematic of the experiment set-up.

    图 7  超构表面样品与弓形架测试系统

    Fig. 7.  Prototype of metasurface and the arched measurement system.

    图 8  BASK调制下对应的(a)已调信号和(b)解调信号; 28.4°偏转角度下BPSK调制对应的(c)已调信号和(d)解调信号

    Fig. 8.  (a) Modulated signal and (b) demodulated signal of BASK; (c) modulated signal and (d) demodulated signal of BPSK at 28.4° receiving angle.

    图 9  超构表面无线通信示意图及现场测试图

    Fig. 9.  Schematic of metasurface wireless communication and the measurement environment.

    图 10  (a) BASK解调星座图及还原图片; (b) BPSK解调星座图及还原图片

    Fig. 10.  (a) BASK constellation diagram and the recovered image; (b) BPSK constellation diagram and the recovered image.

  • [1]

    Luo X G 2019 Adv. Mater. 31 1804680Google Scholar

    [2]

    Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, Ouyang C M, Shi Y L, Han J G, Zhang W L, Zhuang S 2014 Adv. Mater. 26 5031Google Scholar

    [3]

    Zhang X H, Pu M B, Guo Y H, Jin J J, Li X, Ma X L, Luo J, Wang C T, Luo X G 2019 Adv. Funct. Mater. 29 1809145Google Scholar

    [4]

    Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y, Luo X G 2018 Adv. Opt. Mater. 6 1800592Google Scholar

    [5]

    Yang J N, Huang C, Wu XY, Sun B, Luo X G 2018 Adv. Opt. Mater. 6 1800073Google Scholar

    [6]

    Ni X J, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [7]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [8]

    Chen K, Ding G W, Hu G W, Jin Z W, Zhao J M, Feng Y J, Jiang T, Alu A, Qiu C W, 2020 Adv. Mater. 32 1906352Google Scholar

    [9]

    Li J T, Wang G C, Yue Z, Liu J Y, Li J, Zheng C L, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron. Adv. 5 210062-1Google Scholar

    [10]

    Rubin N A, D’Aversa G, Chevalier P, Shi Z J, Chen W T, Capasso F, 2019 Science 365 eaax1839Google Scholar

    [11]

    Monticone F, Estakhri N M, Alu A 2013 Phys. Rev. Lett. 110 203903.Google Scholar

    [12]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [13]

    Dabidian N, Dutta-Gupta S, Kholmanov I, Lai K, Feng L, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc M, Belkin M A, Shvets G 2016 Nano Lett. 16 3607Google Scholar

    [14]

    Zeng C, Lu H, Mao D, Du Y Q, Hua H, Zhao W, Zhao J L 2022 Opto-Electron. Adv. 5 200098Google Scholar

    [15]

    Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H, Wang H C, Chen T Y, Hsieh W T, Wu H J, Sun G, Tsai D P 2016 Laser Photonics Rev. 10 986Google Scholar

    [16]

    Shaltout A M, Shalaev V M, Brongersma M L. 2019 Science 364 3100Google Scholar

    [17]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218Google Scholar

    [18]

    Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S. 2017 Nat. Commun. 8 197Google Scholar

    [19]

    Chen K, Zhang N, Ding G W, Zhao J M, Jiang T, Feng Y J 2020 Adv. Mater. Technol. 5 1900930Google Scholar

    [20]

    Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y J, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [21]

    唐奎, 胡琪, 赵俊明, 陈克, 冯一军 2022 通信学报 43 24Google Scholar

    Tang K, Hu Q, Zhao J M, Chen K, Feng Y J 2022 J. Commun. 43 24Google Scholar

    [22]

    张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178102Google Scholar

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102Google Scholar

    [23]

    Zheng Y L, Chen K, Xu Z Y, Zhang N, Wang J, Zhao J M, Feng Y J 2022 Adv. Sci. 9 2204558Google Scholar

    [24]

    Zhao H T, Shuang Y, Wei M L, Cui T J, Hougne P D, Li L L 2020 Nat. Commun. 11 3926Google Scholar

    [25]

    Cui T J, Liu S, Bai G D, Ma Q 2019 Research 2019 2584609

    [26]

    Hu Q, Chen K, Zheng Y L, Xu Z Y, Zhao J M 2023 Nanophotonics 12 1327Google Scholar

    [27]

    Chen K, Guo W L, Ding G W, Zhao J M, Jiang T, Feng Y J 2020 Opt. Express 28 12638Google Scholar

    [28]

    Ten Brink S, Kramer G, Ashikhmin A 2004 IEEE Trans. Commun. 52 670Google Scholar

    [29]

    邢莉娟, 李卓, 白宝明, 王新梅 2008 物理学报 57 4695Google Scholar

    Xing L J, Li Z, Bai B M, Wang X M 2008 Acta Phys. Sin. 57 4695Google Scholar

  • [1] 魏嘉昕, 沙鹏飞, 方旭晨, 卢增雄, 李慧, 谭芳蕊, 吴晓斌. 基于相位调制的高相干光源照明匀化方法. 物理学报, doi: 10.7498/aps.73.20240644
    [2] 罗文, 张飞舟, 张建柱. 激光主动照明均匀性影响因素及其规律. 物理学报, doi: 10.7498/aps.71.20220420
    [3] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, doi: 10.7498/aps.71.20220835
    [4] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, doi: 10.7498/aps.70.20210228
    [5] 肖鸿晶, 黄超, 唐玉龙, 徐剑秋. 基于时间透镜系统的冲击脉冲产生与特性研究. 物理学报, doi: 10.7498/aps.68.20190246
    [6] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器. 物理学报, doi: 10.7498/aps.68.20190393
    [7] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, doi: 10.7498/aps.67.20172049
    [8] 吴庚坤, 宋金宝, 樊伟. 畸形波电磁散射特性分析及其特征识别标识的研究. 物理学报, doi: 10.7498/aps.66.134302
    [9] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, doi: 10.7498/aps.66.234203
    [10] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究. 物理学报, doi: 10.7498/aps.66.110201
    [11] 杜延磊, 马文韬, 杨晓峰, 刘桂红, 于暘, 李紫薇. 无云情况下L波段微波辐射计快速大气校正方法. 物理学报, doi: 10.7498/aps.64.079501
    [12] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, doi: 10.7498/aps.63.134205
    [13] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, doi: 10.7498/aps.62.184206
    [14] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, doi: 10.7498/aps.61.174204
    [15] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, doi: 10.7498/aps.61.144208
    [16] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器. 物理学报, doi: 10.7498/aps.61.094213
    [17] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, doi: 10.7498/aps.60.094211
    [18] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, doi: 10.7498/aps.59.1857
    [19] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, doi: 10.7498/aps.57.808
    [20] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, doi: 10.7498/aps.57.897
计量
  • 文章访问数:  437
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-30
  • 修回日期:  2025-03-15
  • 上网日期:  2025-03-28

/

返回文章
返回