搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构超构表面实现L波段波束动态调控及信息调制

许一帆 邓烨 佟琬婷 王海峰 王学运 赵俊明 姜田 张升康 陈克 冯一军

引用本文:
Citation:

可重构超构表面实现L波段波束动态调控及信息调制

许一帆, 邓烨, 佟琬婷, 王海峰, 王学运, 赵俊明, 姜田, 张升康, 陈克, 冯一军

L-band reconfigurable metasurface for dynamic beam control and direct information modulation

XU Yifan, DENG Ye, TONG Wanting, WANG Haifeng, WANG Xueyun, ZHAO Junming, JIANG Tian, ZHANG Shengkang, CHEN Ke, FENG Yijun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文提出了一种工作在L波段的宽带可重构转极化超构表面设计方法,并实现了BASK(Binary Amplitude Shift Keying,二进制幅移键控)和BPSK(Binary Phase Shift Keying,二进制相移键控)两种调制方式的超构表面信息直接调制。通过控制超构表面单元结构上的开关二极管通断状态,可在1.17GHz-1.66GHz频段改变单元的转极化反射幅值和相位,并通过对其幅相分布特性的实时编码实现波束调控与信息调制。在此基础上,构建了基于BASK和BPSK两种调制方式的超构表面新型无线通信系统,实现了对数字信息的实时调制与传输。本文提出的超构表面及其设计方法有望在信息传输、卫星通信等应用中发挥作用。
    In this paper, a design method for broadband reconfigurable polarization-converting metasurface operating in L-band is proposed, which is also used to directly modulate the information using two modulation modes of Binary Amplitude Shift Keying (BASK) and Binary Phase Shift Keying (BPSK). Switching the PIN diode's ON/OFF state can be used to modify the amplitude and phase responses of the cross-polarized reflection of the element in the frequency band of 1.17 GHz-1.66 GHz, thereby creating a 1-bit digital coding meta-atom. By altering the real-time coding patterns of the amplitude and phase, the reconfigurable metasurface enables the control of beams and information modulation. Simulation results show that twin-beams and four-beams with different reflection angles can be achieved by changing the coding patterns of the metasurface, fully validating the dynamic far-field beam control capability. As an experimental verification, a reconfigurable metasurface consisting of 10×10 meta-atoms is fabricated, and its beam steering and information modulation functions are tested. We measure the far-field patterns of the metasurface with different coding phase distributions. Furthermore, modulation signals of varying high/low voltage levels and rates are loaded onto the metasurface, with the aim of controlling its modulation mode and rate. The modulated signals reflected from metasurface are captured by a high-speed RF (Radio Frequency) oscilloscope at varying rates and reflection angles, and then demodulated to recover the original information. On this basis, a metasurface wireless communication system based on BASK and BPSK has been constructed to transmit digital image information in a real-world environment. In the experiment, an image is firstly represented by a sequence of digital '0' and '1' bits, corresponding to the sequence of operating states of the metasurface for the transmission of information. The FPGA (Field Programmable Gate Array) is then used to generate signals with high and low voltage levels in real time according to the sequence of working states of the metasurface, and to modulate the carrier signal shining onto the metasurface. Therefore, the signal is converted into a modulated signal and received by the antenna. Finally, the signal is demodulated by the USRP (Universal Software Radio Peripheral) and transmitted to the terminal equipment, yielding the constellation diagrams and enabling the recovery of the images. The image information recovered under both modulation schemes has verified that the system can achieve real-time modulation and transmission of digital information. The proposed metasurface and the design method may be used in many applications, such as satellite communications and digital broadcasting.
  • [1]

    Luo X G 2019Adv. Mater. 31 1804680

    [2]

    Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, Ouyang C M, Shi Y L, Han J G, Zhang W L, Zhuang S 2014Adv. Mater. 265031

    [3]

    Zhang X H, Pu M B, Guo Y H, Jin J J, Li X, Ma X L, Luo J, Wang C T, Luo X G 2019Adv. Funct. Mater. 29 1809145

    [4]

    Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y, Luo X G 2018Adv. Opt. Mater. 6 1800592

    [5]

    Yang J N, Huang C, Wu XY, Sun B, Luo X G 2018Adv. Opt. Mater. 6 1800073

    [6]

    Ni X J, Wong Z J, Mrejen M, Wang Y, Zhang X 2015Science 349 1310

    [7]

    Pendry J B 2000Phys. Rev. Lett. 85 3966

    [8]

    Chen K, Ding G W, Hu G W, Jin Z W, Zhao J M, Feng Y J, Jiang T, Alu A, Qiu C W, 2020Adv. Mater. 32 1906352

    [9]

    Li J T, Wang G C, Yue Z, Liu J Y, Li J, Zheng C L, Zhang Y T, Zhang Y, Yao J Q 2022Opto-Electron. Adv. 5210062-1

    [10]

    Rubin N A, D’Aversa G, Chevalier P, Shi Z J, Chen W T, Capasso F, 2019Science 365 eaax1839

    [11]

    Monticone F, Estakhri N M, Alu A 2013Phys. Rev. Lett. 110 203903.

    [12]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011Science 334 333

    [13]

    Dabidian N, Dutta-Gupta S, Kholmanov I, Lai K, Feng L, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc M, Belkin M A, Shvets G 2016Nano Lett. 16 3607

    [14]

    Zeng C, Lu H, Mao D, Du Y Q, Hua H, Zhao W, Zhao J L 2022Opto-Electron. Adv. 5200098

    [15]

    Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H, Wang H C, Chen T Y, Hsieh W T, Wu H J, Sun G, Tsai D P 2016Laser Photonics Rev. 10 986

    [16]

    Shaltout A M, Shalaev V M, Brongersma M L. 2019Science 364 3100

    [17]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014Light Sci. Appl. 3 218

    [18]

    Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S. 2017Nat. Commun. 8 197

    [19]

    Chen K, Zhang N, Ding G W, Zhao J M, Jiang T, Feng Y J 2020Adv. Mater. Technol. 5 1900930

    [20]

    Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y J, Ding X M, Zhang S, Alu A, Qiu C W 2017Adv. Mater. 29 1606422

    [21]

    Tang K, Hu Q, Zhao J M, Chen K, Feng Y J 2022Journal on Communications 43 24(in Chinese) [唐奎, 胡琪, 赵俊明, 陈克, 冯一军2022通信学报 43 24]

    [22]

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021Acta Phys. Sin. 70 178102(in Chinese) [张娜赵健民陈克赵俊明姜田冯一军2021物理学报 70 178102]

    [23]

    Zheng Y L, Chen K, Xu Z Y, Zhang N, Wang J, Zhao J M, Feng Y J 2022Adv. Sci. 92204558

    [24]

    Zhao H T, Shuang Y, Wei M L, Cui T J, Hougne P D, Li L L 2020Nat. Commun. 11 3926

    [25]

    Cui T J, Liu S, Bai G D, Ma Q 2019Research 20192584609

    [26]

    Hu Q, Chen K, Zheng Y L, Xu Z Y, Zhao J M 2023Nanophotonics. 12 1327

    [27]

    Chen K, Guo W L, Ding G W, Zhao J M, Jiang T, Feng Y J 2020Opt. Express. 28 12638

    [28]

    Ten Brink S, Kramer G, Ashikhmin A 2004IEEE Trans. Commun. 52 670

    [29]

    Xing L J, Li Z, Bai B M, Wang X M 2008Acta Phys. Sin. 57 4695(in Chinese) [邢莉娟李卓白宝明王新梅2008物理学报 57 4695]

  • [1] 魏嘉昕, 沙鹏飞, 方旭晨, 卢增雄, 李慧, 谭芳蕊, 吴晓斌. 基于相位调制的高相干光源照明匀化方法. 物理学报, doi: 10.7498/aps.73.20240644
    [2] 罗文, 张飞舟, 张建柱. 激光主动照明均匀性影响因素及其规律. 物理学报, doi: 10.7498/aps.71.20220420
    [3] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, doi: 10.7498/aps.71.20220835
    [4] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, doi: 10.7498/aps.70.20210228
    [5] 肖鸿晶, 黄超, 唐玉龙, 徐剑秋. 基于时间透镜系统的冲击脉冲产生与特性研究. 物理学报, doi: 10.7498/aps.68.20190246
    [6] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器. 物理学报, doi: 10.7498/aps.68.20190393
    [7] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, doi: 10.7498/aps.67.20172049
    [8] 吴庚坤, 宋金宝, 樊伟. 畸形波电磁散射特性分析及其特征识别标识的研究. 物理学报, doi: 10.7498/aps.66.134302
    [9] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, doi: 10.7498/aps.66.234203
    [10] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究. 物理学报, doi: 10.7498/aps.66.110201
    [11] 杜延磊, 马文韬, 杨晓峰, 刘桂红, 于暘, 李紫薇. 无云情况下L波段微波辐射计快速大气校正方法. 物理学报, doi: 10.7498/aps.64.079501
    [12] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, doi: 10.7498/aps.63.134205
    [13] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, doi: 10.7498/aps.62.184206
    [14] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, doi: 10.7498/aps.61.174204
    [15] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, doi: 10.7498/aps.61.144208
    [16] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器. 物理学报, doi: 10.7498/aps.61.094213
    [17] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, doi: 10.7498/aps.60.094211
    [18] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, doi: 10.7498/aps.59.1857
    [19] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, doi: 10.7498/aps.57.808
    [20] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, doi: 10.7498/aps.57.897
计量
  • 文章访问数:  90
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-28

/

返回文章
返回