-
本文提出一种工作在L波段的宽带可重构转极化超构表面设计方法, 并实现了二进制幅移键控(binary amplitude shift keying, BASK)和二进制相移键控(binary phase shift keying, BPSK)两种调制方式的超构表面信息直接调制. 通过控制超构表面单元结构上的开关二极管通断状态, 可在1.17—1.66 GHz频段改变单元的转极化反射幅值和相位, 并通过对其幅相分布特性的实时编码实现波束调控与信息调制. 在此基础上, 构建了基于BASK和BPSK两种调制方式的超构表面新型无线通信系统, 实现了对数字信息的实时调制与传输. 本文提出的超构表面及其设计方法有望在信息传输、卫星通信等应用中发挥作用.In this paper, a method of designing broadband reconfigurable polarization-converting metasurface operating in L-band is proposed. This method can also be used to directly modulate the information by using two modulation modes: binary amplitude shift keying (BASK) and binary phase shift keying (BPSK). Switching the ' ON/OFF state of PIN diode can be used to modify the amplitude and phase responses of the cross-polarized reflection of the element in a frequency band of 1.17–1.66 GHz, thereby creating a 1-bit digital coding meta-atom. By changing the real-time coding patterns of amplitude and phase, the reconfigurable metasurface can control beams and information modulation. Simulation results show that by changing the coding patterns of the metasurface, twin-beams and four-beams with different reflection angles can be obtained which fully validates the control ability of dynamic far-field beam. As an experimental verification, a reconfigurable metasurface consisting of 10×10 meta-atoms is fabricated, and its beam control and information modulation functions are tested. The far-field patterns of the metasurface with different coding phase distributions are measured. Furthermore, modulation signals of varying high/low voltage levels and rates are loaded onto the metasurface, in order to control its modulation mode and rate. The modulated signals reflected from metasurface are captured by a high-speed radio-frequency (RF) oscilloscope at varying rates and reflection angles, and then demodulated so as to recover the original information. On this basis, a metasurface wireless communication system based on BASK and BPSK is constructed to transmit digital image information in a real-world environment. In the experiment, the image is first represented by a sequence of '0' and '1' bits, corresponding to the operational state sequence of the metasurface used for transmitting information. The field programmable gate array (FPGA) is then used to generate signals with high and low voltage levels in real time according to the sequence of working states of the metasurface, and to modulate the carrier signal irradiated onto the metasurface. Therefore, the signal is converted into a modulated signal and received by the antenna. Finally, the signal is demodulated by the universal software radio peripheral (USRP) and transmitted to the terminal equipment, yielding the constellation diagrams and enabling the recovering of the images. The image information recovered under both modulation schemes verifies that the system can achieve real-time modulation and transmission of digital information. The proposed metasurface and the design method may be used in many fields, such as satellite communications and digital broadcasting.
-
Keywords:
- reconfigurable metasurface /
- L-band /
- amplitude modulation /
- phase modulation
-
图 5 波束调控仿真分析结果图, 左侧图为相位编码及其三维散射方向图, 右侧图为波束切面的二维方向图 (a) 20.5°对称双波束的仿真与测试结果; (b) 28.4°对称双波束的仿真与测试结果; (c) 30.8°对称四波束仿真结果
Fig. 5. Simulation results of the beams control, left panels show the phase coding pattern on the metasurface and the 3D scattering pattern, while the right panels show the 2D scattering pattern of the beam: (a) Simulation and measurement results of twin-beam with titling angle of 20.5°; (b) simulation and measurement results of twin-beam with titling angle of 28.4°; (c) four beams with titling angle 30.8°.
-
[1] Luo X G 2019 Adv. Mater. 31 1804680
Google Scholar
[2] Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, Ouyang C M, Shi Y L, Han J G, Zhang W L, Zhuang S 2014 Adv. Mater. 26 5031
Google Scholar
[3] Zhang X H, Pu M B, Guo Y H, Jin J J, Li X, Ma X L, Luo J, Wang C T, Luo X G 2019 Adv. Funct. Mater. 29 1809145
Google Scholar
[4] Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y, Luo X G 2018 Adv. Opt. Mater. 6 1800592
Google Scholar
[5] Yang J N, Huang C, Wu XY, Sun B, Luo X G 2018 Adv. Opt. Mater. 6 1800073
Google Scholar
[6] Ni X J, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310
Google Scholar
[7] Pendry J B 2000 Phys. Rev. Lett. 85 3966
Google Scholar
[8] Chen K, Ding G W, Hu G W, Jin Z W, Zhao J M, Feng Y J, Jiang T, Alu A, Qiu C W, 2020 Adv. Mater. 32 1906352
Google Scholar
[9] Li J T, Wang G C, Yue Z, Liu J Y, Li J, Zheng C L, Zhang Y T, Zhang Y, Yao J Q 2022 Opto-Electron. Adv. 5 210062-1
Google Scholar
[10] Rubin N A, D’Aversa G, Chevalier P, Shi Z J, Chen W T, Capasso F, 2019 Science 365 eaax1839
Google Scholar
[11] Monticone F, Estakhri N M, Alu A 2013 Phys. Rev. Lett. 110 203903.
Google Scholar
[12] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[13] Dabidian N, Dutta-Gupta S, Kholmanov I, Lai K, Feng L, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc M, Belkin M A, Shvets G 2016 Nano Lett. 16 3607
Google Scholar
[14] Zeng C, Lu H, Mao D, Du Y Q, Hua H, Zhao W, Zhao J L 2022 Opto-Electron. Adv. 5 200098
Google Scholar
[15] Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H, Wang H C, Chen T Y, Hsieh W T, Wu H J, Sun G, Tsai D P 2016 Laser Photonics Rev. 10 986
Google Scholar
[16] Shaltout A M, Shalaev V M, Brongersma M L. 2019 Science 364 3100
Google Scholar
[17] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218
Google Scholar
[18] Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S. 2017 Nat. Commun. 8 197
Google Scholar
[19] Chen K, Zhang N, Ding G W, Zhao J M, Jiang T, Feng Y J 2020 Adv. Mater. Technol. 5 1900930
Google Scholar
[20] Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y J, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422
Google Scholar
[21] 唐奎, 胡琪, 赵俊明, 陈克, 冯一军 2022 通信学报 43 24
Google Scholar
Tang K, Hu Q, Zhao J M, Chen K, Feng Y J 2022 J. Commun. 43 24
Google Scholar
[22] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178102
Google Scholar
Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102
Google Scholar
[23] Zheng Y L, Chen K, Xu Z Y, Zhang N, Wang J, Zhao J M, Feng Y J 2022 Adv. Sci. 9 2204558
Google Scholar
[24] Zhao H T, Shuang Y, Wei M L, Cui T J, Hougne P D, Li L L 2020 Nat. Commun. 11 3926
Google Scholar
[25] Cui T J, Liu S, Bai G D, Ma Q 2019 Research 2019 2584609
[26] Hu Q, Chen K, Zheng Y L, Xu Z Y, Zhao J M 2023 Nanophotonics 12 1327
Google Scholar
[27] Chen K, Guo W L, Ding G W, Zhao J M, Jiang T, Feng Y J 2020 Opt. Express 28 12638
Google Scholar
[28] Ten Brink S, Kramer G, Ashikhmin A 2004 IEEE Trans. Commun. 52 670
Google Scholar
[29] 邢莉娟, 李卓, 白宝明, 王新梅 2008 物理学报 57 4695
Google Scholar
Xing L J, Li Z, Bai B M, Wang X M 2008 Acta Phys. Sin. 57 4695
Google Scholar
计量
- 文章访问数: 437
- PDF下载量: 25
- 被引次数: 0