搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计入枝晶运动生长的铸锭宏观偏析的研究

张洋 张士杰 李云博 李日

引用本文:
Citation:

计入枝晶运动生长的铸锭宏观偏析的研究

张洋, 张士杰, 李云博, 李日
cstr: 32037.14.aps.74.20241702

Study of macroscopic segregation in ingot considering the movement and growth of equiaxial crystals

ZHANG Yang, ZHANG Shijie, LI Yunbo, LI Ri
cstr: 32037.14.aps.74.20241702
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 合金铸锭凝固过程中经常伴随着游离枝晶在运动的同时生长运动及相互碰撞等现象, 其对铸锭的温度场、流场、溶质场及微观组织等具有不可忽视的影响, 是研究铸锭凝固组织形成的关键问题之一. 元胞自动机-格子玻尔兹曼(CA-LB)耦合模型近年来在处理运动枝晶方面发展迅速, 该模型不仅可以很好地维持运动枝晶的形貌, 还可以合理地计算出枝晶间的相互碰撞. 本文改进了模拟游离枝晶运动生长的元胞自动机-格子玻尔兹曼模型, 采用交替方向隐式迭代法求解导热微分方程, 模拟参数不受稳定性条件限制. 分别验证了流场与固相和温度场耦合的准确性. 随后采用该模型分别模拟了Fe-0.34%C合金铸锭中等轴晶运动与否的凝固过程, 模拟结果表明, 等轴晶的运动会增大与临近枝晶的接触概率, 会使铸锭中的晶粒尺寸更加均匀; 枝晶的运动还会改变熔体中心部位的溶质分布, 特别是增大了顶部正偏析的大小以及范围; 等轴晶的运动会受到柱状晶的阻碍, 所以CET区域受枝晶运动的影响不大.
    The solidification process of alloy ingot is often accompanied by the phenomena of free dendrites growing and colliding with each other while moving, which has a non-negligible influence on the temperature field, flow field, solute field and microstructure of the ingot, and it is one of the key issues in the study of ingot solidification organization formation. The cellular automata-lattice Boltzmann (CA-LB) coupling model has been developed rapidly in recent years in dealing with the moving dendrites, which can not only maintain the morphology of the moving dendrites well, but also calculate the mutual collisions between the dendrites reasonably. In this work, the cell-automata-lattice Boltzmann model for simulating the growth of free dendrites is improved. Alternating direction implicit iteration method is used to solve the differential heat conduction equation, and the simulation parameters are not limited by stability conditions in this method. In this research, the accuracy of the flow-solid coupling of the model is verified by taking the flow around a circular cylinder for example, and the temperature field of the model is well coupled under the natural convection condition. Finally, the solidification process of Fe-0.34%C alloy ingots with or without equiaxed grain movement is simulated using this model. The simulation results show that the movement of equiaxed grains increases the contact probability with the neighboring dendrites, which leads to a more uniform grain size in the ingot; the movement of dendrites also changes the solute distribution in the center of the melt, especially increasing the size and range of the hot-top segregation; the movement of equiaxed grains is impeded by the columnar crystals, and therefore the CET region is not much affected by the movement of dendrites.
      通信作者: 李日, sdzllr@163.com
    • 基金项目: 国家自然科学基金(批准号: 51475138, 51975182)资助的课题.
      Corresponding author: LI Ri, sdzllr@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51475138, 51975182).
    [1]

    Qi X B, Chen Y, Kang X H, Li D Z, Gong T Z 2017 Sci Rep 7 45770Google Scholar

    [2]

    Rátkai L, Pusztai T, Gránásy L 2019 npj Comput. Mater. 5 113Google Scholar

    [3]

    张士杰, 王颖明, 王琦, 李晨宇, 李日 2021 物理学报 70 238101Google Scholar

    Zhang S J, Wang Y M, Wang Q, Li C Y, Li R 2021 Acta Phys. Sin. 70 238101Google Scholar

    [4]

    Sakane S, Takaki T, Ohno M, Shibuta Y, Aoki T 2020 Comput. Mater. Sci. 178 109639Google Scholar

    [5]

    Ren J K, Chen Y, Cao Y F, Sun M Y, Xu B, Li D Z 2020 J. Mater. Sci. Tech. 58 171Google Scholar

    [6]

    Yamanaka N, Sakane S, Takaki T 2021 Comput. Mater. Sci. 197 110658Google Scholar

    [7]

    Zhang S J, Zhu B F, Li Y B, Zhang Y, Li R 2024 Comput. Mater. Sci. 245 113308Google Scholar

    [8]

    Liu L, Pian S, Zhang Z, Bao Y C, Li R, Chen H J 2018 Comput. Mater. Sci. 146 9Google Scholar

    [9]

    Wang Q, Wang Y M, Zhang S J, Guo B X, Li C Y, Li R 2021 Crystals 11 1056Google Scholar

    [10]

    Sakane S, Aoki T, Takaki T 2022 Comput. Mater. Sci. 211 111542Google Scholar

    [11]

    Meng S X, Zhang A, Guo Z P, Wang Q G 2020 Comput. Mater. Sci. 184 109784Google Scholar

    [12]

    Takaki T 2023 IOP Conf. Ser. Mater. Sci. Eng. 1274 012009Google Scholar

    [13]

    Flemings M C, Mehrabian R, Nereo G E 1968 T. Metall. Soc. AIME 239 1449

    [14]

    Bennon W D, Incropera F P 1987 Int. J. Heat Mass Tran. 30 2161Google Scholar

    [15]

    Bennon W D, Incropera F P 1987 Int. J. Heat Mass Tran. 30 2171Google Scholar

    [16]

    Beckermann C, Viskanta R 1988 Physicochemical Hydrodynamics 10 195

    [17]

    Gu J P, Beckermann C 1999 Metall. Mater. Trans. A 30 1357Google Scholar

    [18]

    Wu M, Ludwig A, Kharicha A 2016 Appl. Math. Model. 41 102Google Scholar

    [19]

    Zhang Z, Bao Y, Liu L, Pian S, Li R 2018 Metall. Mater. Trans. A 49 2750Google Scholar

    [20]

    Zhang S, Li Y, Zhang S, Zhu B, Li R 2025 Int. J. Therm. Sci. 211 109737Google Scholar

    [21]

    Rappaz M, Thévoz P H 1987 Acta Metall. 35 2929Google Scholar

    [22]

    Zhu M F, Lee S Y, Hong C P 2004 Phys. Rev. E 69 061610Google Scholar

    [23]

    Sun D K, Zhu M F, Pan S Y, Yang C R, Raabe D 2011 Comput. Math. Appl. 61 3585Google Scholar

    [24]

    Zhu M, Stefanescu D 2007 Acta Mater. 55 1741Google Scholar

    [25]

    Wen B, Zhang C, Tu Y, Wang C, Fang H 2014 J. Comput. Phys. 266 161Google Scholar

    [26]

    Mei R, Yu D, Shyy W, Luo L S 2002 Phys. Rev. E 65 041203Google Scholar

    [27]

    Drummond J E, Tahir M I 1984 Int. J. Multiphase Flow 10 515Google Scholar

    [28]

    张照 2020 硕士学位论文 (天津: 河北工业大学)

    Zhang Z 2020 M. S. Thesis (Tianjin: Hebei University of Technology

    [29]

    Shan X 1997 Phys. Rev. E 55 2780Google Scholar

    [30]

    Clever R M, Busse F H 1974 J. Fluid Mech. 65 625Google Scholar

    [31]

    Wu M, Könözsy L, Ludwig A, Schützenhöfer W, Tanzer R 2008 Steel Res. Int. 79 637Google Scholar

    [32]

    Luo S, Wang W, Zhu M 2018 Int. J. Heat Mass Tran. 116 940Google Scholar

    [33]

    Ge H H, Li J, Guo Q T, Ren F L, Xia M X, Yao J H, Li J G 2021 Metall. Mater. Trans. B 52 2992Google Scholar

  • 图 1  圆柱绕流物理模型

    Fig. 1.  Model of the flow around a cylinder.

    图 2  圆柱绕流的结果 (a) Fs = 0.02; (b) Fs = 0.038; (c) Fs = 0.138; (d) Fs = 0.363

    Fig. 2.  Result of the flow around a cylinder: (a) Fs = 0.02; (b) Fs = 0.038; (c) Fs = 0.138; (d) Fs = 0.363.

    图 3  圆柱绕流结果对比

    Fig. 3.  Comparison of results.

    图 4  Rayleigh–Bénard自然对流模型示意图

    Fig. 4.  Schematic of the Rayleigh-Bénard natural convection model.

    图 5  不同Ra数下系统达到稳态时的等温线分布 (a) Ra = 2500; (b) Ra = 5000; (c) Ra = 10000; (d) Ra = 50000

    Fig. 5.  Isothermal distribution of the system reaching steady state for different Ra numbers: (a) Ra = 2500; (b) Ra = 5000; (c) Ra = 10000; (d) Ra = 50000.

    图 6  稳态Nu数随Ra数的变化规律

    Fig. 6.  Variation rule of steady state Nu number with Ra number.

    图 7  铸锭物理模型

    Fig. 7.  Physical model of ingot.

    图 8  不考虑等轴晶运动时铸锭的凝固过程 (a) t = 2.0 s; (b) t = 4.5 s; (c) t = 4.6 s; (d) t = 4.8 s; (e) t = 5.2 s; (f) t = 5.6 s; (g) t = 6.0 s; (h) t = 7.0 s; (i) t = 10.0 s; (j) t = 18.0 s

    Fig. 8.  Solidification process of ingot without considering the equiaxial crystal motion: (a) t = 2.0 s; (b) t = 4.5 s; (c) t = 4.6 s; (d) t = 4.8 s; (e) t = 5.2 s; (f) t = 5.6 s; (g) t = 6.0 s; (h) t = 7.0 s; (i) t = 10.0 s; (j) t = 18.0 s.

    图 9  考虑等轴晶运动的铸锭凝固过程 (a) t = 2.0 s; (b) t = 4.5 s; (c) t = 4.6 s; (d) t = 4.8 s; (e) t = 5.2 s; (f) t = 5.6 s; (g) t = 6.0 s; (h) t = 7.0 s; (i) t = 10.0 s; (j) t = 18.0 s

    Fig. 9.  Solidification process of ingot considering equiaxial crystal motion: (a) t = 2.0 s; (b) t = 4.5 s; (c) t = 4.6 s; (d) t = 4.8 s; (e) t = 5.2 s; (f) t = 5.6 s; (g) t = 6.0 s; (h) t = 7.0 s; (i) t = 10.0 s; (j) t = 18.0 s.

    图 10  不同情况下铸锭完全凝固时的形貌 (a) 等轴晶运动; (b) 等轴晶不运动

    Fig. 10.  Morphology of a fully solidified ingot in different cases: (a) Equiaxed grain motion; (b) equiaxed grain immobility.

    图 11  不同情况下铸锭完全凝固的溶质分布 (a) 等轴晶运动; (b) 等轴晶不运动

    Fig. 11.  Solute distribution in the fully solidified ingot for different cases: (a) Equiaxed grain motion; (b) equiaxed grain immobility.

    图 12  等轴晶运动与否和实验结果的偏析程度对比

    Fig. 12.  Comparison between the presence or absence of equiaxed crystal movement and the degree of segregation observed in experimental results.

    表 1  不同位置的${C_{\text{e}}}$与${D_{\text{e}}}$的取值方法

    Table 1.  Methods of taking values of ${C_{\text{e}}}$ and ${D_{\text{e}}}$ at different locations.

    液相固相界面界面与固相之间界面与液相之间
    ${C_{\text{e}}}$${C_{\text{l}}}$${C_{\text{s}}}/k$${C_{\text{l}}}$${C_{\text{l}}}$${C_{\text{l}}}$
    ${D_{\text{e}}}$${D_{\text{l}}}$${D_{\text{s}}}$${D_{\text{l}}}$${D_{\text{s}}}$${D_{\text{l}}}$
    下载: 导出CSV

    表 2  模拟用到的参数

    Table 2.  Parameters used for simulation.

    Physical parameter Value
    Solidus temperature, ${T_{\text{m}}}/K$ 1811.15
    Liquidus temperature, ${T_0}/K$ 1723.15
    Liquidus slope, ${m_{\text{l}}}/({{\mathrm{K}} {\cdot} {{\text{%}} ^{-1}}})$ –80.45
    Interface kinetics coefficient, ${\mu _{\text{k}}}/({1{0^{ - 3}}\;{\mathrm{m}} {\cdot} {{\mathrm{s}}^{ - 1}} {\cdot} {\mathrm{K}}})$ 2
    Kinetic anisotropy strength, ${\delta _{\text{k}}}$ 0.3
    Thermodynamic anisotropy, ${\delta _{\text{t}}}$ 0.3
    Liquid Viscosity, $\nu /({1{0^{ - 3}}\;{\mathrm{kg}} {\cdot} {{\mathrm{m}}^{ - 1}} {\cdot} {{\mathrm{s}}^{ - 1}}})$ 3.6
    Diffusivity in liquid, ${D_{\text{l}}}/( {{{10}^{ - 8}}\;{{\text{m}}^2} {\cdot} {{\text{s}}^{ - 1}}} )$ 2
    Diffusivity in solid, ${D_{\text{s}}}/( {{{10}^{ - 9}}\;{{\text{m}}^2} {\cdot} {{\text{s}}^{ - 1}}} )$ 1
    Partition coefficient, $k$ 0.36
    Average Gibbs-Tomson
    coefficient, $ {\bar \varGamma /( {{{10}^{ - 7}}\;{\text{m}} {\cdot} {\text{K}}} )}$
    1.9
    Specific heat capacity, ${C_{\text{p}}}/( {{\text{J}} {\cdot} {\text{k}}{{\text{g}}^{ - 1}} {\cdot} {{\text{K}}^{ - 1}}} )$ 455
    Convective heat transfer
    coefficient, $h/({\mathrm{W}} {\cdot} {{\mathrm{m}}^{ - 2}} {\cdot} {{\mathrm{K}}^{ - 1}})$
    600
    Thermal conductivity, $\lambda /({\text{W}} {\cdot} {{\text{m}}^{ - 1}} {\cdot} {{\text{K}}^{ - 1}})$ 30
    Thermal expansion coefficient, $ {\beta _{\text{T}}}/( {{{10}^{ - 4}}\;{{\mathrm{K}}^{ - 1}}} ) $ 2
    Solutal expansion coefficient, $ {\beta _{\text{c}}}/( {{{10}^{ - 2}} \;{{\text{%}} ^{ - 1}}} ) $ 1.1
    Latent heat, $L/( {{{10}^3}\;{\text{J}} {\cdot} {\text{k}}{{\text{g}}^{ - 1}}} )$ 269.55
    Density, $\rho /( {{\text{kg}} {\cdot} {{\text{m}}^{ - 3}}} )$ 7001
    下载: 导出CSV

    表 3  不同位置的平均浓度以及偏析程度

    Table 3.  Average concentration and segregation of index (SI) at different locations.

    运动0.2270.2570.2920.3090.3230.4410.2820.2890.351
    偏析/%–33.2–24.4–14.1–9.1–5.029.7–17.1–15.03.2%
    不运动0.2280.2780.2980.30.3410.3840.2780.2890.345
    偏析/%–32.9–18.2–12.4–11.80.312.9–18.2–15.01.5%
    下载: 导出CSV
  • [1]

    Qi X B, Chen Y, Kang X H, Li D Z, Gong T Z 2017 Sci Rep 7 45770Google Scholar

    [2]

    Rátkai L, Pusztai T, Gránásy L 2019 npj Comput. Mater. 5 113Google Scholar

    [3]

    张士杰, 王颖明, 王琦, 李晨宇, 李日 2021 物理学报 70 238101Google Scholar

    Zhang S J, Wang Y M, Wang Q, Li C Y, Li R 2021 Acta Phys. Sin. 70 238101Google Scholar

    [4]

    Sakane S, Takaki T, Ohno M, Shibuta Y, Aoki T 2020 Comput. Mater. Sci. 178 109639Google Scholar

    [5]

    Ren J K, Chen Y, Cao Y F, Sun M Y, Xu B, Li D Z 2020 J. Mater. Sci. Tech. 58 171Google Scholar

    [6]

    Yamanaka N, Sakane S, Takaki T 2021 Comput. Mater. Sci. 197 110658Google Scholar

    [7]

    Zhang S J, Zhu B F, Li Y B, Zhang Y, Li R 2024 Comput. Mater. Sci. 245 113308Google Scholar

    [8]

    Liu L, Pian S, Zhang Z, Bao Y C, Li R, Chen H J 2018 Comput. Mater. Sci. 146 9Google Scholar

    [9]

    Wang Q, Wang Y M, Zhang S J, Guo B X, Li C Y, Li R 2021 Crystals 11 1056Google Scholar

    [10]

    Sakane S, Aoki T, Takaki T 2022 Comput. Mater. Sci. 211 111542Google Scholar

    [11]

    Meng S X, Zhang A, Guo Z P, Wang Q G 2020 Comput. Mater. Sci. 184 109784Google Scholar

    [12]

    Takaki T 2023 IOP Conf. Ser. Mater. Sci. Eng. 1274 012009Google Scholar

    [13]

    Flemings M C, Mehrabian R, Nereo G E 1968 T. Metall. Soc. AIME 239 1449

    [14]

    Bennon W D, Incropera F P 1987 Int. J. Heat Mass Tran. 30 2161Google Scholar

    [15]

    Bennon W D, Incropera F P 1987 Int. J. Heat Mass Tran. 30 2171Google Scholar

    [16]

    Beckermann C, Viskanta R 1988 Physicochemical Hydrodynamics 10 195

    [17]

    Gu J P, Beckermann C 1999 Metall. Mater. Trans. A 30 1357Google Scholar

    [18]

    Wu M, Ludwig A, Kharicha A 2016 Appl. Math. Model. 41 102Google Scholar

    [19]

    Zhang Z, Bao Y, Liu L, Pian S, Li R 2018 Metall. Mater. Trans. A 49 2750Google Scholar

    [20]

    Zhang S, Li Y, Zhang S, Zhu B, Li R 2025 Int. J. Therm. Sci. 211 109737Google Scholar

    [21]

    Rappaz M, Thévoz P H 1987 Acta Metall. 35 2929Google Scholar

    [22]

    Zhu M F, Lee S Y, Hong C P 2004 Phys. Rev. E 69 061610Google Scholar

    [23]

    Sun D K, Zhu M F, Pan S Y, Yang C R, Raabe D 2011 Comput. Math. Appl. 61 3585Google Scholar

    [24]

    Zhu M, Stefanescu D 2007 Acta Mater. 55 1741Google Scholar

    [25]

    Wen B, Zhang C, Tu Y, Wang C, Fang H 2014 J. Comput. Phys. 266 161Google Scholar

    [26]

    Mei R, Yu D, Shyy W, Luo L S 2002 Phys. Rev. E 65 041203Google Scholar

    [27]

    Drummond J E, Tahir M I 1984 Int. J. Multiphase Flow 10 515Google Scholar

    [28]

    张照 2020 硕士学位论文 (天津: 河北工业大学)

    Zhang Z 2020 M. S. Thesis (Tianjin: Hebei University of Technology

    [29]

    Shan X 1997 Phys. Rev. E 55 2780Google Scholar

    [30]

    Clever R M, Busse F H 1974 J. Fluid Mech. 65 625Google Scholar

    [31]

    Wu M, Könözsy L, Ludwig A, Schützenhöfer W, Tanzer R 2008 Steel Res. Int. 79 637Google Scholar

    [32]

    Luo S, Wang W, Zhu M 2018 Int. J. Heat Mass Tran. 116 940Google Scholar

    [33]

    Ge H H, Li J, Guo Q T, Ren F L, Xia M X, Yao J H, Li J G 2021 Metall. Mater. Trans. B 52 2992Google Scholar

  • [1] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [2] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [3] 王哲, 王发展, 王欣, 何银花, 马姗, 吴振. Fe-Pb合金凝固多相体系内偏析形成过程的三维数值模拟. 物理学报, 2014, 63(7): 076101. doi: 10.7498/aps.63.076101
    [4] 李日, 王健, 周黎明, 潘红. 基于体积平均法模拟铸锭凝固过程的可靠性分析. 物理学报, 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [5] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟. 物理学报, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [6] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [7] 贾玉坤, 杨仕娥, 郭巧能, 陈永生, 郜小勇, 谷锦华, 卢景霄. 非晶硅太阳电池宽光谱陷光结构的优化设计. 物理学报, 2013, 62(24): 247801. doi: 10.7498/aps.62.247801
    [8] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [9] 朱昌盛, 王军伟, 王智平, 冯力. 受迫流动下的枝晶生长相场法模拟研究. 物理学报, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [10] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [11] 宋男男, 吴士平, 栾义坤, 康秀红, 李殿中. 卧式离心铸造过程数值模拟与水力学试验研究. 物理学报, 2009, 58(13): 112-S117. doi: 10.7498/aps.58.112
    [12] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [13] 刘东戎, 桑宝光, 康秀红, 李殿中. 考虑固相移动的大尺寸钢锭宏观偏析数值模拟. 物理学报, 2009, 58(13): 104-S111. doi: 10.7498/aps.58.104
    [14] 杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 采用多相场法研究三维层片共晶生长的厚度效应. 物理学报, 2008, 57(8): 5290-5295. doi: 10.7498/aps.57.5290
    [15] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究. 物理学报, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [16] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [17] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [19] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟. 物理学报, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  371
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-09
  • 修回日期:  2025-02-19
  • 上网日期:  2025-03-18

/

返回文章
返回