搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单脉冲时间精确可控的单纵模Nd:YAG激光器

戴殊韬 江涛 吴丽霞 吴鸿春 林文雄

引用本文:
Citation:

单脉冲时间精确可控的单纵模Nd:YAG激光器

戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄

Single-axial-mode Nd:YAG laser with precisely controllable laser pulse output time

Dai Shu-Tao, Jiang Tao, Wu Li-Xia, Wu Hong-Chun, Lin Wen-Xiong
PDF
HTML
导出引用
  • 报道了一种单脉冲输出时间精确可控的单纵模Nd:YAG激光器. 该激光器谐振腔采用自滤波非稳腔结构得到TEM00模, 利用磷酸钛氧铷电光晶体作为相位调制器来扫描腔长, 通过种子注入的扫描-保持-触发技术锁定腔模, 得到稳定的单脉冲输出时间精确可控的单纵模输出. 该1064 nm激光器输出脉冲能量为50 mJ, 脉冲建立时间48 ns, 单脉冲输出时间抖动小于1%. 用波长计WS7测量脉冲的波长和线宽, 测量结果显示, 波长计干涉仪干涉条纹清晰光滑, 是典型的多光束干涉波形, 显示波长为1064.40416 nm, 线宽 < 0.5 pm (波长计的极限分辨率). 同时以0.1 Hz的工作频率连续记录了1700发脉冲的波长, 波长抖动小于0.1 pm (峰峰值).
    In recent years, high-energy single-axial-mode Q-switched lasers have been widely studied and applied because of their wide applications such as in nonlinear optics, laser spectroscopy and light detection and ranging (LIDAR). Many applications require a Q-switched pulse that has not only single axial mode but also can be synchronized with an external system. But two most commonly used methods (the build-up time reducing technique and ramp fire technique) are difficult to achieve single-axial mode operation. In this work, we apply the ramp-hold-fire technique to an injection-seeded Nd:YAG laser. The slave oscillator is a self-filtering unstable resonator (SFUR). The SFUR oscillator can achieve a smooth spatial profile TEM00 transverse mode. An RTP electro-optical crystal is adopted for intracavity phase modulator to modify the effective optical path length of the slave oscillator cavity. The seed-injection locking is realized by the ramp-hold-fire technique. The laser driver generates a pumping pulse. After a suitable time delay the driver is fired, a linear ramp voltage is applied to the RTP crystal. A photodiode detector monitors the interference signal. As soon as the interference peak is detected, the controlling electronics produces a stop signal. The ramp voltage on the RTP crystal is stopped and held at a fixed value. Then the Q-switch is fired at a set time, and finally single axial mode laser is demonstrated. Combining the advantages of intracavity phase modulation and Q-switch exact synchronization of the ramp hold fire technique, we obtain a narrow linewidth single-axial-mode laser pulse with precisely controllable output time. The laser is capable of generating 1064 nm pulse energy large than 50 mJ. The pulse build-up time is reduced by 31 ns to 48 ns. The pulse firing time is precisely controlled with jitter less than 1%. Then the frequency spectrum of the 1064 nm laser is measured with a commercial Fizeau wavemeter HighFinesse WS7. The multi-beam interference patterns of the pulse are shown to be smooth in the wavemeter. The wavelength is measured to be 1064.40416 nm and the linewidth is less than 0.5 pm which is limited by the instrument resolution. Meanwhile, the frequency stability is measured to be less than 0.1 pm (V-V) over 1700 pulses with a working frequency of 0.1 Hz.
      通信作者: 林文雄, wxlin@fjirsm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFB0701000, 2017YFB1104500)资助的课题.
      Corresponding author: Lin Wen-Xiong, wxlin@fjirsm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0701000, 2017YFB1104500).
    [1]

    Kulatilaka W D, Anderson T N, Bougher T L, Lucht R P 2005 Appl. Phys. B 80 669Google Scholar

    [2]

    Liu Z, Wu S, Liu B 2007 Opt. Las. Tech. 39 541Google Scholar

    [3]

    Jiang N, Webster M, Lempert W R, Miller J D, Meyer T R, Ivey C B, Danehy P M 2011 Appl. Opt. 50 A20Google Scholar

    [4]

    Kawahara T D, Kitahara T, Kobayashi F, Saito Y, Nomura A 2011 Opt. Express 19 3553Google Scholar

    [5]

    Luis V, Daniel P E, Daniel M, Jerry L, Daniel J A, Alec M W 2010 Rev. Sci. Instrum. 81 063106Google Scholar

    [6]

    Schmitt R L, Rahn R A 1986 Appl. Opt. 25 629Google Scholar

    [7]

    Schroder T, Lemmerz C, Reitebuch O, Wirth M, Wuhrer C, Treichel R 2007 Appl. Phys. B 87 437Google Scholar

    [8]

    Hendersen S W, Yuen E H, Fry E S 1986 Opt. Lett. 11 715Google Scholar

    [9]

    Fry E D, Hu Q, Li X 1991 Appl. Opt. 30 1015Google Scholar

    [10]

    Walther T, Larsen M P, Fry E S 2001 Appl. Opt. 40 3046Google Scholar

    [11]

    周军 2007 博士学位论文(北京: 中国科学院)

    Zhou J 2007 Ph. D. Dissertation (Beijing: Chinese Academy of Science) (in Chinese)

    [12]

    Hovis F E, Culpepper C, Schum T, Witt G 2005 Lidar Remote Sensing for Industry and Environmental Monitoring V Honolulu, USA, November 9–11, 2004 p198

    [13]

    Zhang J, Zhu X, Zang H, Ma X, Yin S, Li S, Chen W 2014 Appl. Opt. 53 7241Google Scholar

    [14]

    张俊旋, 朱小磊, 臧华国, 陈卫标 2016 中国激光 43 0601004

    Zhang J X, Zhu X L, Zang H G, Chen W B 2016 Chin. J. Laser 43 0601004

    [15]

    Dai S T, Wu H C, Shi F, Deng J, Ge Y, Weng W, Lin W X 2018 Chin. Phys. B 27 054212Google Scholar

    [16]

    Bhuiyan A H, Naik S V, Lucht R P 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, USA, January 4–7, 2010-1408

    [17]

    Bhuiyan A H, Richardson D R, Naik S V, Lucht R P 2009 Appl. Phys. B 94 559

    [18]

    Gobbi P G, Morosi S, Reali G C, Zarkasi A S 1985 Appl. Opt. 24 26Google Scholar

    [19]

    Koechner W 2006 Solid-state Laser Engineering (sixth Ed.) (New York: Springer) p55

    [20]

    李峰, 陆祖康, 赵岚, 张海平, 丁志华 1998 光学学报 18 1479Google Scholar

    Li F, Lu Z K, Zhao L, Zhang H P, Ding Z H 1998 Acta Opt. Sin. 18 1479Google Scholar

    [21]

    Chen S, Lin W, Shi F, Huang J, Li J, Zheng H, Lin J, Xu C 2007 Chin. Opt. Lett. 5 223

  • 图 1  种子注入单纵模Nd:YAG激光器

    Fig. 1.  Schematic of the injection-seeded single-frequency Nd:YAG laser.

    图 2  扫描-保持-触发技术实际工作过程波形图

    Fig. 2.  Waveform of the working of the ramp-hold-fire technique.

    图 3  激光脉冲输出能量随泵浦能量的关系曲线

    Fig. 3.  Laser output energy with pumped energy.

    图 4  种子注入前后脉冲波形及建立时间

    Fig. 4.  Temporal pulse shape of the laser in seeded and unseeded operation.

    图 5  同步触发100次脉冲叠加图

    Fig. 5.  Temporal spatial of 100 accumulated laser pulse with synchronous trigger.

    图 6  波长计WS7测量结果

    Fig. 6.  Measurement result of the wavemeter WS7.

    图 7  脉冲波长稳定性

    Fig. 7.  Laser wavelength stability.

  • [1]

    Kulatilaka W D, Anderson T N, Bougher T L, Lucht R P 2005 Appl. Phys. B 80 669Google Scholar

    [2]

    Liu Z, Wu S, Liu B 2007 Opt. Las. Tech. 39 541Google Scholar

    [3]

    Jiang N, Webster M, Lempert W R, Miller J D, Meyer T R, Ivey C B, Danehy P M 2011 Appl. Opt. 50 A20Google Scholar

    [4]

    Kawahara T D, Kitahara T, Kobayashi F, Saito Y, Nomura A 2011 Opt. Express 19 3553Google Scholar

    [5]

    Luis V, Daniel P E, Daniel M, Jerry L, Daniel J A, Alec M W 2010 Rev. Sci. Instrum. 81 063106Google Scholar

    [6]

    Schmitt R L, Rahn R A 1986 Appl. Opt. 25 629Google Scholar

    [7]

    Schroder T, Lemmerz C, Reitebuch O, Wirth M, Wuhrer C, Treichel R 2007 Appl. Phys. B 87 437Google Scholar

    [8]

    Hendersen S W, Yuen E H, Fry E S 1986 Opt. Lett. 11 715Google Scholar

    [9]

    Fry E D, Hu Q, Li X 1991 Appl. Opt. 30 1015Google Scholar

    [10]

    Walther T, Larsen M P, Fry E S 2001 Appl. Opt. 40 3046Google Scholar

    [11]

    周军 2007 博士学位论文(北京: 中国科学院)

    Zhou J 2007 Ph. D. Dissertation (Beijing: Chinese Academy of Science) (in Chinese)

    [12]

    Hovis F E, Culpepper C, Schum T, Witt G 2005 Lidar Remote Sensing for Industry and Environmental Monitoring V Honolulu, USA, November 9–11, 2004 p198

    [13]

    Zhang J, Zhu X, Zang H, Ma X, Yin S, Li S, Chen W 2014 Appl. Opt. 53 7241Google Scholar

    [14]

    张俊旋, 朱小磊, 臧华国, 陈卫标 2016 中国激光 43 0601004

    Zhang J X, Zhu X L, Zang H G, Chen W B 2016 Chin. J. Laser 43 0601004

    [15]

    Dai S T, Wu H C, Shi F, Deng J, Ge Y, Weng W, Lin W X 2018 Chin. Phys. B 27 054212Google Scholar

    [16]

    Bhuiyan A H, Naik S V, Lucht R P 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, USA, January 4–7, 2010-1408

    [17]

    Bhuiyan A H, Richardson D R, Naik S V, Lucht R P 2009 Appl. Phys. B 94 559

    [18]

    Gobbi P G, Morosi S, Reali G C, Zarkasi A S 1985 Appl. Opt. 24 26Google Scholar

    [19]

    Koechner W 2006 Solid-state Laser Engineering (sixth Ed.) (New York: Springer) p55

    [20]

    李峰, 陆祖康, 赵岚, 张海平, 丁志华 1998 光学学报 18 1479Google Scholar

    Li F, Lu Z K, Zhao L, Zhang H P, Ding Z H 1998 Acta Opt. Sin. 18 1479Google Scholar

    [21]

    Chen S, Lin W, Shi F, Huang J, Li J, Zheng H, Lin J, Xu C 2007 Chin. Opt. Lett. 5 223

  • [1] 罗文, 张飞舟, 张建柱. 激光主动照明均匀性影响因素及其规律. 物理学报, 2022, 71(15): 154203. doi: 10.7498/aps.71.20220420
    [2] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [3] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] 肖鸿晶, 黄超, 唐玉龙, 徐剑秋. 基于时间透镜系统的冲击脉冲产生与特性研究. 物理学报, 2019, 68(15): 154201. doi: 10.7498/aps.68.20190246
    [5] 窦微, 浦双双, 牛娜, 曲大鹏, 孟祥峻, 赵岭, 郑权. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器. 物理学报, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018
    [6] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [7] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [8] 吴庚坤, 宋金宝, 樊伟. 畸形波电磁散射特性分析及其特征识别标识的研究. 物理学报, 2017, 66(13): 134302. doi: 10.7498/aps.66.134302
    [9] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [10] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究. 物理学报, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [11] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [12] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [13] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [14] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [15] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器. 物理学报, 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [16] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [17] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [18] 任广军, 魏臻, 张强, 姚建铨. 掺钕保偏光纤放大器的研究. 物理学报, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [19] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
计量
  • 文章访问数:  7856
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-04-10
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回