-
表面增强拉曼散射(surface enhanced Raman spectroscopy, SERS)作为一种超灵敏的无标签分析技术, 在分子检测领域得到了广泛的研究及发展, 而增强机理的探究及灵敏度、均匀性、稳定性等性能的提升一直是研究人员面临的重要挑战. 本文通过梳理SERS机理的国内外研究进展, 综述了单一金属基底、二硫化钼(MoS2)基底及金属/MoS2复合基底的机理及研究现状和存在的问题等; 总结介绍了二硫化钼基底及金属/二硫化钼复合基底制备方法的优缺点; 概述了二硫化钼及其金属复合基底在食品检测、生物医学、环境污染监测等方面的应用研究进展; 最后提出了SERS技术目前存在的不足并对其发展前景进行了展望.
-
关键词:
- 表面增强拉曼散射 /
- 金属/MoS2纳米复合结构 /
- 应用 /
- 综述
Surface-enhanced Raman scattering is an ultra-sensitive molecular detection technology, and the exploration of its mechanism and the improvement of sensitivity, uniformity and stability have always been significant challenge to researchers. In this paper, the development of surface-enhanced Raman scattering mechanism and its research progress, and thus review the mechanism, research status and existing problems of single metal substrate, molybdenum disulfide substrate and metal/molybdenum disulfide composite substrate are summarized; The preparation method of the molybdenum disulfide substrate including hydrothermal/solvothermal method, micromechanical peeling method, chemical meteorological deposition method, and preparation method of metal/molybdenum disulfide composite substrate are briefly introduced, in which the electrochemical method, thermal reduction method, seed-mediated growth method, and electron beam lithography method are covered, and the advantages and disadvantages of the above preparation methods are evaluated; The research progress of the applications of molybdenum disulfide and its metal composite substrates in food testing, biomedicine, environmental pollution monitoring, etc. are briefly overviewed The surface-enhanced Raman scattering study is extended to other transition metal binary compounds and their metal composite structures. Therefore, the metal/molybdenum disulfide composite substrate expands the types of surface-enhanced Raman scattering substrates, thereby making up for the deficiency of low reproducibility, poor stability, and weak adsorption. Moreover, it has the advantages of fluorescence quenching effect, high sensitivity, wide detection range, and it can be combined with on-site rapid separation technology, and thus has widespread application prospects. Finally, the shortcomings of surface-enhanced Raman scattering technology and prospects for its development are also pointed out.-
Keywords:
- surface-enhanced Raman scattering /
- metal/MoS2 nanocomposite structure /
- application /
- review
[1] Howard M W, Cooney R P, Mcquillan A J 2010 J. Raman Spectrosc. 9 273
[2] Hubbell J A, Chilkoti A 2012 Science 337 303Google Scholar
[3] Jin I L, Lee W K 2015 Materials Lett. 160 139Google Scholar
[4] Mulvihill M J, Ling X Y, Henzie J, Yang P 2010 J. Am. Chem. Soc. 132 268Google Scholar
[5] Otto A 2005 J. Raman Spectrosc. 36 497Google Scholar
[6] Sun Y, Wiederrecht G P 2007 Small 3 1825Google Scholar
[7] Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar
[8] Popp J, Mayerhöfer T 2009 Annu. Rev. Anal. Chem. 394 1717
[9] Conley H, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar
[10] Li X, Li J, Wang X, Hu J, Fang X, Chu X, Wei Z, Shan J, Ding X 2014 Integ. Ferroelectr. 158 26Google Scholar
[11] Li J, Li X, Wang X, Hu J, Chu X, Fang X, Wei Z 2016 Surf. Eng. 32 245Google Scholar
[12] Zhai Y, Li J, Chu X, Xu M, Jin F, Li X, Fang X, Wei Z, Wang X 2016 J. Alloy. Compd. 672 600Google Scholar
[13] Zhai Y, Li J, Chu X, Xu M, Jin F, Fang X 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) Chongqing, China, July 18-22, p287s
[14] Shan J, Li J, Chu X, Xu M, Jin F, Fang X, Wei Z, Wang X 2018 Appl. Surf. Sci. 443 31Google Scholar
[15] Shan J, Li J, Chu X, Xu M, Jin F, Wang X, Ma L, Fang X, Wei Z, Wang X 2018 RSC Adv. 8 7942Google Scholar
[16] Jiang S, Guo J, Zhang C, Li C, Wang M, Li Z, Gao S, Chen P, Si H, Xu S 2017 RSC Adv. 7 5764Google Scholar
[17] Hubbell J A, Chilkoti A 2013 Nature Materials 12 963
[18] Fears R, Gehr P 2012 Nature 488 281
[19] Singh R 2002 Phys. Perspect. 4 399Google Scholar
[20] Jeanmaire D L, Van Duyne R 1977 J. Electroanal. Chem. Interfacial Electrochem. 84 1Google Scholar
[21] Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215Google Scholar
[22] Banholzer M J, Millstone J E, Qin L, Mirkin C K A 2008 Chem. Soc. Rev. 37 885Google Scholar
[23] Khlebtsov B N, Khlebtsov N G 2007 J. Phys. Chem. C 111 11516
[24] 李玉玲, 阚彩侠, 王长顺, 刘津升, 徐海英, 倪缘, 徐伟, 柯军华, 施大宁 2014 物理化学学报 30 1827Google Scholar
Li Y L, Kan C X, Wang C S, Liu J S, Xu H Y, Ni Y, Xu W, Ke J H, Shi D N 2014 Acta Phys.- Chim. Sin. 30 1827Google Scholar
[25] Brawley Z, Bauman S, Darweesh A, Debu D, Tork Ladani F, Herzog J 2018 Materials 11 942Google Scholar
[26] Kneipp K, Wang Y, Dasari R R, Feld M S 1995 Appl. Spectrosc. 49 780Google Scholar
[27] Zhang P, Yang S, Wang L, Zhao J, Zhu Z, Liu B, Zhong J, Sun X 2014 Nanotechnology 25 245301Google Scholar
[28] Chirumamilla M, Das G, Toma A, Gopalakrishnan A, Zaccaria R P, Liberale C, Angelis D F, Di Fabrizio E 2012 Microelectron. Eng. 97 189Google Scholar
[29] Wu T, Lin Y W 2018 Appl. Surf. Sci. 435 1143Google Scholar
[30] Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463
[31] Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar
[32] Natan M J 2006 Faraday Discuss. 132 321Google Scholar
[33] Schlücker S 2014 Angew. Chem. Int. Edit. 53 4756Google Scholar
[34] Zang X, Yao K, Yan A 2017 International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) Taiwan, China, June 18-22, 2017 p894
[35] Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 Acs Photonics 3 1164Google Scholar
[36] Xia M 2016 Ph. D. Dissertation(California: University of California)
[37] Liang X, Wang Y S, You T T, Zhang X J, Yang N, Wang G S, Yin P G 2017 Nanoscale 9 8879Google Scholar
[38] Shakya J, Patel A S, Singh F, Mohanty T 2016 Appl. Phys. Lett. 108 013103Google Scholar
[39] Bhanu U, Islam M R, Tetard L, Khondaker S I 2014 Sci. Rep. 4 5575
[40] Lu J, Lu J H, Liu H, Liu B, Gong L, Tok E S, Loh K P, Sow C H 2015 Small 11 1792Google Scholar
[41] Hwang D Y, Suh D H 2017 Nanotechnology 28 025603Google Scholar
[42] Zeng Z Q, Tang D, Liu L W 2016 Nanotechnology 27 455301Google Scholar
[43] Li Z, Jiang S, Xu S, Zhang C, Qiu H, Li C, Sheng Y, Huo Y, Yang C, Man B 2016 Sensor. Actuat. B-Chem. 230 645Google Scholar
[44] Singha S S, Mondal S, Bhattacharya T S, Das L, Sen K, Satpati B, Das K, Singha A 2018 Biosens. Bioelectron. 119 10Google Scholar
[45] Fei X, Liu Z, Hou Y, Li Y, Yang G, Su C, Wang Z, Zhong H, Zhuang Z, Guo Z 2017 Materials 10 650Google Scholar
[46] Yan D, Qiu W, Chen X, Liu L, Lai Y, Meng Z, Song J, Liu X Y, Zhan D 2018 Phys. Chem. C 122 14467Google Scholar
[47] Qiu H, Li Z, Gao S, Chen P, Zhang C, Jiang S, Xu S, Yang C, Li H 2015 Rsc Adv. 5 83899Google Scholar
[48] 夏洪坤, 邹利锋, 马楠, 嵇天浩 2016 人工晶体学报 45 291Google Scholar
Xia H K, Zou L F, Ma N, Ji T H 2016 J. Synthetic Cryst. 45 291Google Scholar
[49] Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J, Lou J 2014 Acs Nano 8 12682Google Scholar
[50] Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar
[51] Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A T, Agarwal R 2015 Nano Lett. 15 3646Google Scholar
[52] Xu J, Li C, Si H, Zhao X, Wang L, Jiang S, Wei D, Yu J, Xiu X, Zhang C 2018 Opt. Express 26 21546Google Scholar
[53] Liang X, Zhang X J, You T T, Yang N, Wang G S, Yin P G 2017 J. Raman Spectrosc. 49 245
[54] Jin K, Xie L, Tian Y, Liu D 2016 J. Phys. Chem. C 120 11204Google Scholar
[55] Zhao Y, Pan X, Zhang L, Xu Y, Li C, Wang J, Ou J, Xiu X, Man B, Yang C 2017 Rsc Adv. 7 36516Google Scholar
[56] Kim J Y, Kim J, Joo J 2016 Opt. Express 24 27546Google Scholar
[57] Lu Z, Si H, Li Z, Yu J, Liu Y, Feng D, Zhang C, Yang W, Man B, Jiang S 2018 Opt. Express 26 21626Google Scholar
[58] Nair R, Gummaluri V S, Gayathri P K, Vijayan C 2017 Mater. Res. Express 4 015025Google Scholar
-
图 9 电子束光刻法制备的Au领结/MoS2复合SERS基底 (a)[51], Au矩形/MoS2复合SERS基底[49] (b)和Au圆盘/MoS2复合SERS基底(c)[50]
Fig. 9. Au bow tie/MoS2 composite SERS substrate prepared by electron beam lithography(a)[51], Au rectangular/MoS2 composite SERS substrate prepared by electron beam lithography(b)[49] and Au disc/MoS2 composite SERS substrate prepared by electron beam lithography(c)[50]
-
[1] Howard M W, Cooney R P, Mcquillan A J 2010 J. Raman Spectrosc. 9 273
[2] Hubbell J A, Chilkoti A 2012 Science 337 303Google Scholar
[3] Jin I L, Lee W K 2015 Materials Lett. 160 139Google Scholar
[4] Mulvihill M J, Ling X Y, Henzie J, Yang P 2010 J. Am. Chem. Soc. 132 268Google Scholar
[5] Otto A 2005 J. Raman Spectrosc. 36 497Google Scholar
[6] Sun Y, Wiederrecht G P 2007 Small 3 1825Google Scholar
[7] Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar
[8] Popp J, Mayerhöfer T 2009 Annu. Rev. Anal. Chem. 394 1717
[9] Conley H, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar
[10] Li X, Li J, Wang X, Hu J, Fang X, Chu X, Wei Z, Shan J, Ding X 2014 Integ. Ferroelectr. 158 26Google Scholar
[11] Li J, Li X, Wang X, Hu J, Chu X, Fang X, Wei Z 2016 Surf. Eng. 32 245Google Scholar
[12] Zhai Y, Li J, Chu X, Xu M, Jin F, Li X, Fang X, Wei Z, Wang X 2016 J. Alloy. Compd. 672 600Google Scholar
[13] Zhai Y, Li J, Chu X, Xu M, Jin F, Fang X 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) Chongqing, China, July 18-22, p287s
[14] Shan J, Li J, Chu X, Xu M, Jin F, Fang X, Wei Z, Wang X 2018 Appl. Surf. Sci. 443 31Google Scholar
[15] Shan J, Li J, Chu X, Xu M, Jin F, Wang X, Ma L, Fang X, Wei Z, Wang X 2018 RSC Adv. 8 7942Google Scholar
[16] Jiang S, Guo J, Zhang C, Li C, Wang M, Li Z, Gao S, Chen P, Si H, Xu S 2017 RSC Adv. 7 5764Google Scholar
[17] Hubbell J A, Chilkoti A 2013 Nature Materials 12 963
[18] Fears R, Gehr P 2012 Nature 488 281
[19] Singh R 2002 Phys. Perspect. 4 399Google Scholar
[20] Jeanmaire D L, Van Duyne R 1977 J. Electroanal. Chem. Interfacial Electrochem. 84 1Google Scholar
[21] Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215Google Scholar
[22] Banholzer M J, Millstone J E, Qin L, Mirkin C K A 2008 Chem. Soc. Rev. 37 885Google Scholar
[23] Khlebtsov B N, Khlebtsov N G 2007 J. Phys. Chem. C 111 11516
[24] 李玉玲, 阚彩侠, 王长顺, 刘津升, 徐海英, 倪缘, 徐伟, 柯军华, 施大宁 2014 物理化学学报 30 1827Google Scholar
Li Y L, Kan C X, Wang C S, Liu J S, Xu H Y, Ni Y, Xu W, Ke J H, Shi D N 2014 Acta Phys.- Chim. Sin. 30 1827Google Scholar
[25] Brawley Z, Bauman S, Darweesh A, Debu D, Tork Ladani F, Herzog J 2018 Materials 11 942Google Scholar
[26] Kneipp K, Wang Y, Dasari R R, Feld M S 1995 Appl. Spectrosc. 49 780Google Scholar
[27] Zhang P, Yang S, Wang L, Zhao J, Zhu Z, Liu B, Zhong J, Sun X 2014 Nanotechnology 25 245301Google Scholar
[28] Chirumamilla M, Das G, Toma A, Gopalakrishnan A, Zaccaria R P, Liberale C, Angelis D F, Di Fabrizio E 2012 Microelectron. Eng. 97 189Google Scholar
[29] Wu T, Lin Y W 2018 Appl. Surf. Sci. 435 1143Google Scholar
[30] Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463
[31] Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar
[32] Natan M J 2006 Faraday Discuss. 132 321Google Scholar
[33] Schlücker S 2014 Angew. Chem. Int. Edit. 53 4756Google Scholar
[34] Zang X, Yao K, Yan A 2017 International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) Taiwan, China, June 18-22, 2017 p894
[35] Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 Acs Photonics 3 1164Google Scholar
[36] Xia M 2016 Ph. D. Dissertation(California: University of California)
[37] Liang X, Wang Y S, You T T, Zhang X J, Yang N, Wang G S, Yin P G 2017 Nanoscale 9 8879Google Scholar
[38] Shakya J, Patel A S, Singh F, Mohanty T 2016 Appl. Phys. Lett. 108 013103Google Scholar
[39] Bhanu U, Islam M R, Tetard L, Khondaker S I 2014 Sci. Rep. 4 5575
[40] Lu J, Lu J H, Liu H, Liu B, Gong L, Tok E S, Loh K P, Sow C H 2015 Small 11 1792Google Scholar
[41] Hwang D Y, Suh D H 2017 Nanotechnology 28 025603Google Scholar
[42] Zeng Z Q, Tang D, Liu L W 2016 Nanotechnology 27 455301Google Scholar
[43] Li Z, Jiang S, Xu S, Zhang C, Qiu H, Li C, Sheng Y, Huo Y, Yang C, Man B 2016 Sensor. Actuat. B-Chem. 230 645Google Scholar
[44] Singha S S, Mondal S, Bhattacharya T S, Das L, Sen K, Satpati B, Das K, Singha A 2018 Biosens. Bioelectron. 119 10Google Scholar
[45] Fei X, Liu Z, Hou Y, Li Y, Yang G, Su C, Wang Z, Zhong H, Zhuang Z, Guo Z 2017 Materials 10 650Google Scholar
[46] Yan D, Qiu W, Chen X, Liu L, Lai Y, Meng Z, Song J, Liu X Y, Zhan D 2018 Phys. Chem. C 122 14467Google Scholar
[47] Qiu H, Li Z, Gao S, Chen P, Zhang C, Jiang S, Xu S, Yang C, Li H 2015 Rsc Adv. 5 83899Google Scholar
[48] 夏洪坤, 邹利锋, 马楠, 嵇天浩 2016 人工晶体学报 45 291Google Scholar
Xia H K, Zou L F, Ma N, Ji T H 2016 J. Synthetic Cryst. 45 291Google Scholar
[49] Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J, Lou J 2014 Acs Nano 8 12682Google Scholar
[50] Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar
[51] Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A T, Agarwal R 2015 Nano Lett. 15 3646Google Scholar
[52] Xu J, Li C, Si H, Zhao X, Wang L, Jiang S, Wei D, Yu J, Xiu X, Zhang C 2018 Opt. Express 26 21546Google Scholar
[53] Liang X, Zhang X J, You T T, Yang N, Wang G S, Yin P G 2017 J. Raman Spectrosc. 49 245
[54] Jin K, Xie L, Tian Y, Liu D 2016 J. Phys. Chem. C 120 11204Google Scholar
[55] Zhao Y, Pan X, Zhang L, Xu Y, Li C, Wang J, Ou J, Xiu X, Man B, Yang C 2017 Rsc Adv. 7 36516Google Scholar
[56] Kim J Y, Kim J, Joo J 2016 Opt. Express 24 27546Google Scholar
[57] Lu Z, Si H, Li Z, Yu J, Liu Y, Feng D, Zhang C, Yang W, Man B, Jiang S 2018 Opt. Express 26 21626Google Scholar
[58] Nair R, Gummaluri V S, Gayathri P K, Vijayan C 2017 Mater. Res. Express 4 015025Google Scholar
计量
- 文章访问数: 16390
- PDF下载量: 290
- 被引次数: 0