搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温退火优化h-BN/Ag/Ag2O异质结构型及表面增强拉曼散射性能研究

郑林启 时术华 李金泽 王子宇 李爽

引用本文:
Citation:

高温退火优化h-BN/Ag/Ag2O异质结构型及表面增强拉曼散射性能研究

郑林启, 时术华, 李金泽, 王子宇, 李爽

Optimization of h-BN/Ag/Ag2O heterostructure by high temperature annealing and its surface-enhanced Raman scattering performance

Zheng Lin-Qi, Shi Shu-Hua, Li Jin-Ze, Wang Zi-Yu, Li Shuang
PDF
HTML
导出引用
  • 由等离激元金属和半导体结合形成的金属/半导体异质结构型有利于光诱导电荷转移(PICT)效率的提高, 在表面增强拉曼散射(SERS)研究中具有明显优势. 本文通过对所制备的杂化底物进行热退火处理进一步提高了其SERS活性. 首先, 在二维六方氮化硼(h-BN)纳米片表面成功负载生长了高密度和单分散的Ag/Ag2O纳米颗粒. 在此基础上, 通过进一步高温退火处理所得复合体系, 构建出高效的电荷转移通道, 从而大幅度提高了PICT效率, 使化学增强得到显著提高. 实验结果表明, 相比于退火前, 经320 ℃高温退火处理所得到的h-BN/Ag/Ag2O复合材料作为基底, 可以使结晶紫分子的SERS信号强度显著增强18倍, 增强因子高达1.63145 × 107. 最后, 基于h-BN/Ag/Ag2O 320 ℃退火复合材料优异的SERS性能, 实现了对食品添加剂专利蓝V的超灵敏SERS检测, 其检测极限低至10–12 M. 本文构建的h-BN/Ag/Ag2O 320 ℃退火复合材料兼具物理增强和化学增强, 在食品添加剂的痕量分析中具有显著优势.
    As a commonly used food additive, synthetic dyes are widely used in foods such as beverages, sweets and dairy products, and in the food processing process. Excessive use of synthetic dyes may induce cell mutations, children’s hyperactivity, genetic diseases and even cancer, which greatly threatens human health. As a fast, cheap, stable, ultra-sensitive and accurate detection method, SERS detection can reflect rich information about molecular fingerprint through the vibration of the analyte, and accurately determine the trace quantity of synthetic dyes in the actual environment. The metal/semiconductor heterostructure formed by the combination of plasmon metal and semiconductor is advantageous for the enhancement of photoinduced charge transfer (PICT) efficiency, and has obvious advantages in the study of surface-enhanced Raman scattering. In this work, the prepared hybrid substrate is annealed to further improve the surface-enhanced Raman scattering activity. Initially, high-density and monodisperse silver/silver oxide (Ag/Ag2O) nanoparticles are loaded onto two-dimensional hexagonal boron nitride (h-BN) nanosheets. On this basis, by annealing the system at high temperature, an efficient charge transfer channel is constructed, which greatly improves the PICT efficiency and chemical enhancement (CM). It is confirmed experimentally that the SERS signal intensity of h-BN/Ag/Ag2O material annealed at 320 ℃ with crystal violet (CV) as probe molecule is significantly increased 18 times compared with that of unannealed material, enhancement factor (EF) reaches 16.3145 ×107. Finally, based on the excellent SERS property of h-BN/Ag/Ag2O annealed at 320 ℃, the SERS detection of food additive Patent Blue V (PBV) is conducted in this work. The results show that the lowest detection concentration can reach 10–12 M, and the trace detection of synthetic dye PBV is realized. It has excellent spatial uniformity and anti-interference capability, which is of great significance in implementing the actual scene detection of PBV. The h-BN/Ag/Ag2O annealed at 320 ℃, the composite which is constructed in this paper, has both physical enhancement and chemical enhancement, and possess significant advantages in ultra-low sensitive SERS detection of food additives.
      通信作者: 李爽, lishuang@sdjzu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11905115)资助的课题.
      Corresponding author: Li Shuang, lishuang@sdjzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11905115).
    [1]

    Zhang Y, Hu L, Liu X, Liu B, Wu K 2015 Food Chem. 166 352Google Scholar

    [2]

    Nevado J J B, Flores J R, Llerena M J V, Fariñas N R 1999 Talanta 48 895Google Scholar

    [3]

    Akbarian Y, Shabani-Nooshabadi M, Karimi-Maleh H 2018 Sens. Actuators, B 273 228Google Scholar

    [4]

    Bijad M, Karimi-Maleh H, Farsi M, Shahidi S A 2017 J. Food Meas. Charact. 12 634Google Scholar

    [5]

    Darabi R, Shabani-Nooshabadi M 2021 Food Chem. 339 127841Google Scholar

    [6]

    Ntrallou K, Gika H, Tsochatzis E 2020 Foods 9 58Google Scholar

    [7]

    Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H 2018 Talanta 176 208Google Scholar

    [8]

    Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H 2019 Composites Part B 172 666Google Scholar

    [9]

    Zhang J, Wang X, Zhang S, Wang W, Hojo M, Chen Z 2014 J. Electrochem. Soc. 161 H453Google Scholar

    [10]

    Duman S, Erbas Z, Soylak M 2020 Microchem. J. 159 105468Google Scholar

    [11]

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) 2013 EFSA J. 11 2818

    [12]

    Perez-Urquiza M, Beltran J L 2000 J. Chromatogr. A 898 271Google Scholar

    [13]

    Ozdemir Y, Akkan A A 1999 Turk. J. Chem. 23 221

    [14]

    Unsal Y E, Soylak M, Tuzen M 2015 Environ. Monit. Assess. 187 203Google Scholar

    [15]

    Yoshioka N, Ichihashi K 2008 Talanta 74 1408Google Scholar

    [16]

    Liu E, Fan X, Yang Z, Han L, Li S, Huang Y, Liao K, Cai L 2022 Spectrochim. Acta, Part A 276 121229Google Scholar

    [17]

    Zhang Y, Yang Z, Zou Y, Farooq S, Li Y, Zhang H 2023 Food Chem. 412 135563Google Scholar

    [18]

    Wang C M, Roy P K, Juluri B K, Chattopadhyay S 2018 Sens. Actuators, B 261 218Google Scholar

    [19]

    Koberling F, Gryczynski Z K, Gregor I, Berer T, Klar T A, Jacak J, Buchegger B, Langer G 2019 Proc. SPIE 10884 18840UGoogle Scholar

    [20]

    Campion A, Kambhampati P 1998 Chem. Soc. Rev. 27 241Google Scholar

    [21]

    Schlucker S 2014 Angew. Chem. Int. Ed. 53 4756Google Scholar

    [22]

    Kanipe K N, Chidester P P, Stucky G D, Moskovits M 2016 ACS Nano 10 7566Google Scholar

    [23]

    Cho W J, Kim Y, Kim J K 2012 ACS Nano 6 249Google Scholar

    [24]

    Xie S, Chen D, Gu C, Jiang T, Zeng S, Wang Y Y, Ni Z, Shen X, Zhou J 2021 ACS Appl. Mater. Interfaces 13 33345Google Scholar

    [25]

    Wang Y, Zhang M, Yu H, Zuo Y, Gao J, He G, Sun Z 2019 Appl. Catal. B 252 174Google Scholar

    [26]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [27]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [28]

    Jing X X, Li D Q, Zhang Y, Hou X Y, Jiang J, Fan X C, Wang M C, Feng S P, Yu Y F, Lu J P, Hu Z L, Ni Z H 2021 Chin. Phys. Lett. 38 074203Google Scholar

    [29]

    Jiao A, Cui Q, Li S, Tian Y, Ma H, Wang C, Zhang M, Chen M, Li G, Liu X 2022 Opt. Express 30 588Google Scholar

    [30]

    Yu D, Xu L, Zhang H, Li J, Wang W, Yang L, Jiang X, Zhao B 2023 Chin. Chem. Lett. 34 107771Google Scholar

    [31]

    Xue W, Han B, Ma H, Hou X, Wang J J, Li R, Zhang Y 2023 Chem. Eng. J. Adv. 13 100440Google Scholar

    [32]

    Ji S, Kou S, Wang M, Qiu H, Sun X, Dou J, Yang Z 2019 Appl. Surf. Sci. 489 1002Google Scholar

    [33]

    Xu L, Zhang H, Tian Y, Jiao A, Li S, Tan Y, Chen M, Chen F 2020 Talanta 209 120535Google Scholar

    [34]

    Zhang H, Li G, Li S, Xu L, Tian Y, Jiao A, Liu X, Chen F, Chen M 2018 Appl. Surf. Sci. 457 684Google Scholar

    [35]

    Peng Q, Ji W, De S 2012 Comput. Mater. Sci. 56 11Google Scholar

    [36]

    Cai Q R, Scullion D, Gan W, Falin A, Zhang S Y, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H 2019 Science Advances 5 eaav0129Google Scholar

    [37]

    Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Yu T, Ajayan P M, Tour J M 2014 Nano Res. 7 1232Google Scholar

    [38]

    Cai Q R, Scullion D, Gan W, Falin A, Cizek P, Liu S, Edgar J H, Liu R, Cowie B C C, Santos E J G, Li L H 2020 Phys. Rev. Lett. 125 085902Google Scholar

    [39]

    Li L H, Xing T, Chen Y, Jones R 2014 Adv. Mater. Interfaces 1 1300132Google Scholar

    [40]

    Shen L, Zhao Y, Wang Y, Song R, Yao Q, Chen S, Chai Y 2016 J. Mater. Chem. A 4 5044Google Scholar

    [41]

    Cai Q, Du A, Gao G, et al. 2016 Adv. Funct. Mater. 26 8202Google Scholar

    [42]

    Li L H, Cervenka J, Watanabe K, Taniguchi T, Chen Y 2014 ACS Nano 8 1457Google Scholar

    [43]

    Dai P, Xue Y, Wang X, Weng Q, Zhang C, Jiang X, Tang D, Wang X, Kawamoto N, Ide Y, Mitome M, Golberg D, Bando Y 2015 Nanoscale 7 18992Google Scholar

    [44]

    Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar

    [45]

    Blase X, Rubio A, Louie S G, Cohen M L 1995 Phys. Rev. B: Condens. Matter Mater. Phys. 51 6868Google Scholar

    [46]

    Han W Q, Wu L, Zhu Y, Watanabe K, Taniguchi T 2008 Appl. Phys. Lett. 93 223103Google Scholar

    [47]

    Cai Q, Gan W, Falin A, Watanabe K, Taniguchi T, Zhuang J, Hao W, Huang S, Tao T, Chen Y, Li L H 2020 ACS Appl. Mater. Interfaces 12 21985Google Scholar

    [48]

    Madasu M, Hsieh P L, Chen Y J, Huang M H 2019 ACS Appl. Mater. Interfaces 11 38039Google Scholar

    [49]

    Xu L, Cui Q, Tian Y, Jiao A, Zhang M, Li S, Li H, Chen M 2021 Appl. Surf. Sci. 545 149054Google Scholar

    [50]

    Tian Y, Cui Q, Ma H, Jiao A, Wang C, Zhang M, Zheng L, Wang X, Li S, Li G, Chen M 2022 Appl. Surf. Sci. 578 152100Google Scholar

    [51]

    Li S, Zhao J, Liu G, Xu L, Tian Y, Jiao A, Chen M 2021 Adv. Nanotechnol. 32 125401Google Scholar

    [52]

    Tian Y, Zhang H, Xu L, Chen M, Chen F 2018 Opt. Lett. 43 635Google Scholar

    [53]

    Tian Y, Li X, Wang F, Gu C, Zhao Z, Si H, Jiang T 2021 J. Hazard. Mater. 403 124009Google Scholar

    [54]

    Chen Y, Liu H, Li X, Tang S, Gu C, Wei G, Jiang T, Zhou X 2021 Sens. Actuators, B 339 129856Google Scholar

    [55]

    Li X, Liu H, Chen Y, Gu C, Wei G, Zhou J, Jiang T 2021 ACS Sustainable Chem. Eng. 9 12885Google Scholar

    [56]

    Lin S, Lin X, Han S, He L, Zhao H, Zhang J, Hasi W, Wang L 2019 J. Alloys Compd. 805 318Google Scholar

    [57]

    Mei R, Wang Y, Yu Q, Yin Y, Zhao R, Chen L 2020 ACS Appl. Mater. Interfaces 12 2059Google Scholar

    [58]

    Yang Y, Liu J, Fu Z W, Qin D 2014 J. Am. Chem. Soc. 136 8153Google Scholar

    [59]

    Gu H, Tang M, Qin L, Kang S Z, Li X 2022 Environ. Res. 204 112289Google Scholar

    [60]

    Cui X, Li J, Li Y, Liu M, Qiao J, Wang D, Cao H, He W, Feng Y, Yang Z 2022 Spectrochim. Acta, Part A 266 120432Google Scholar

    [61]

    Natan M J 2006 Faraday Discuss. 132 321Google Scholar

    [62]

    Wei W, Wang Y, Ji J, Zuo S, Li W, Bai F, Fan H 2018 Nano Lett. 18 4467Google Scholar

  • 图 1  (a)—(c) 原始h-BN纳米片, h-BN/Ag/Ag2O, h-BN/Ag/Ag2O 320 ℃退火产物的TEM图像(插图为对应纳米材料的溶液); (d), (e) 负载在h-BN上的Ag/Ag2O纳米颗粒在320 ℃退火前和退火后的粒径分布图

    Fig. 1.  (a)–(c) TEM images of the original h-BN nanosheets, h-BN/Ag/Ag2O, and h-BN/Ag/Ag2O annealing products at 320 ℃ (Illustration is the solution of the corresponding nanomaterial); (d), (e) particle size distributions of Ag/Ag2O nanoparticles loaded on h-BN before and after annealing at 320 ℃.

    图 2  (a) HAADF-STEM图像; (b)—(e) h-BN/Ag/Ag2O 320 ℃退火复合材料中Ag, O, B和N元素的分布图; (f) 混合后的元素映射图

    Fig. 2.  (a) HAADF-STEM image; (b)–(e) distribution of Ag, O, B and N elements in h-BN/Ag/Ag2O annealed composite at 320 ℃; (f) mixed element map.

    图 3  h-BN/Ag/Ag2O 320 ℃退火后的 HRTEM图像(a)和SAED图像(b); 退火前 (c) 和退火后 (d) 的EDS图

    Fig. 3.  HRTEM image (a) and SAED image (b) of h-BN/Ag/Ag2O after annealed in 320 ℃; EDS image before (c) and after (d) annealed of h-BN/Ag/Ag2O.

    图 4  (a) 原始h-BN, h-BN/Ag/Ag2O和h-BN/Ag/Ag2O 320 ℃退火复合材料的XRD图谱; (b) h-BN/Ag/Ag2O在不同温度下退火所得产物的紫外-可见光-近红外吸收光谱; (c) h-BN, h-BN/Ag/Ag2O和h-BN/Ag/Ag2O 320 ℃退火复合材料的带隙

    Fig. 4.  (a) XRD spectrum of original h-BN nanosheets, h-BN/Ag/Ag2O and h-BN/Ag/Ag2O annealed 320 ℃; (b) ultraviolet-visible-near-infrared absorption spectra of materials annealed by h-BN/Ag/Ag2O at different temperatures; (c) band gaps of h-BN, h-BN/Ag/Ag2O and h-BN/Ag/Ag2O annealed at 320 ℃.

    图 5  h-BN, h-BN/Ag/Ag2O和h-BN/Ag/Ag2O 320 ℃退火后的光电流响应(a)和 PL光谱(b)

    Fig. 5.  Photocurrent response (a) and PL spectra (b) of h-BN, h-BN/Ag/Ag2O and h-BN/Ag/Ag2O after annealed at 320 ℃.

    图 6  (a) 不同退火温度下获得的h-BN/Ag/Ag2O复合材料作为基底, 对CV (10–6 M)分子进行拉曼测试得到的SERS光谱, 插图为在320 ℃附近退火后得到的SERS光谱. (b) 不同退火温度的基底对应的CV分子的SERS光谱在1177, 1593, 1621 cm–1处特征峰的强度分布, 插图为在320 ℃附近退火后的基底所对应的特征峰强度分布

    Fig. 6.  (a) SERS spectrum of CV (10–6 M) molecules was obtained by Raman test on h-BN/Ag/Ag2O composites at different annealing temperatures, the inset shows the SERS spectrum obtained after annealing near 320 ℃. (b) Intensity distribution of characteristic peaks of CV molecules corresponding to substrates with different annealing temperatures at 1177, 1593 and 1621 cm–1, the inset shows the characteristic peak intensity distribution corresponding to the substrate after annealing near 320 ℃.

    图 7  (a) 不同浓度的CV的SERS光谱; (b) CV分子在1621 cm–1处的SERS强度和分子浓度的对数之间的关系; (c) 不同浓度的R6G的SERS光谱; (d) R6G分子在1502 cm–1的SERS强度和分子浓度的对数之间的关系

    Fig. 7.  (a) SERS spectra of CV with different concentrations; (b) relationship between SERS intensity and logarithm of molecular concentration of CV molecule at 1621 cm–1; (c) SERS spectrum of R6G with different concentrations; (d) relationship between SERS intensity and logarithm of molecular concentration of R6G at 1502 cm–1.

    图 8  (a)不同浓度的PBV的SERS光谱; (b) PBV分子在1619 cm–1处的SERS强度和分子浓度的对数之间的关系

    Fig. 8.  (a) SERS spectrum of PBV with different concentrations; (b) relationship between SERS intensity and logarithm of molecular concentration of PBV at 1619 cm–1.

    图 9  (a) 以PBV (10–6 M)为探针分子, 在h-BN/Ag/Ag2O 320 ℃退火复合材料上随机选取8个不同位置的点进行检测, 得到的SERS光谱; (b) PBV分子位于1619 cm–1处的拉曼特征峰强度的变化情况; (c) 在39 μm×39 μm的正方形区域内等距离取得169个点位得到SERS光谱, 峰位在1619 cm–1处的强度变化情况; (d) 拉曼信号峰位在1619 cm–1处强度的RSD

    Fig. 9.  (a) Using PBV (10–6 M) as probe molecule, the SERS spectrum was obtained by randomly selecting 8 points at different positions on the h-BN/Ag/Ag2O annealed composite at 320 ℃; (b) change of Raman characteristic peak intensity of PBV at 1619 cm–1; (c) 169 sites were obtained equidistant in a square area of 39 μm×39 μm to obtain SERS spectrum, with the intensity change at 1619 cm–1; (d) Raman signal peak at 1619 cm–1 intensity RSD.

    图 10  (a) 浓度为10–6 M的PBV通过单独添加K+, Ca2+, Na+和Mg2+离子(10–3 M)后的拉曼光谱; (b) 在离子干扰的情况下PBV分子在1619 cm–1处的拉曼峰强度的波动; (c) 浓度为10–6 M的PBV与酸奶、气泡水和彩色蛋糕提取液混合的拉曼光谱; (d) 在添加三种干扰物质后1619 cm–1 处拉曼峰强度的变化

    Fig. 10.  (a) Raman spectra of PBV with a concentration of 10–6 M by adding K+, Ca2+, Na+ and Mg2+ (10–3 M) alone; (b) the fluctuation of Raman peak intensity of PBV molecule at 1619 cm–1 in the presence of ion interference; (c) Raman spectra of PBV at a concentration of 10–6 M mixed with yogurt, sparkling water and colored cake extract; (d) change in Raman peak intensity at 1619 cm–1 after the addition of three interfering substances.

  • [1]

    Zhang Y, Hu L, Liu X, Liu B, Wu K 2015 Food Chem. 166 352Google Scholar

    [2]

    Nevado J J B, Flores J R, Llerena M J V, Fariñas N R 1999 Talanta 48 895Google Scholar

    [3]

    Akbarian Y, Shabani-Nooshabadi M, Karimi-Maleh H 2018 Sens. Actuators, B 273 228Google Scholar

    [4]

    Bijad M, Karimi-Maleh H, Farsi M, Shahidi S A 2017 J. Food Meas. Charact. 12 634Google Scholar

    [5]

    Darabi R, Shabani-Nooshabadi M 2021 Food Chem. 339 127841Google Scholar

    [6]

    Ntrallou K, Gika H, Tsochatzis E 2020 Foods 9 58Google Scholar

    [7]

    Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H 2018 Talanta 176 208Google Scholar

    [8]

    Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H 2019 Composites Part B 172 666Google Scholar

    [9]

    Zhang J, Wang X, Zhang S, Wang W, Hojo M, Chen Z 2014 J. Electrochem. Soc. 161 H453Google Scholar

    [10]

    Duman S, Erbas Z, Soylak M 2020 Microchem. J. 159 105468Google Scholar

    [11]

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) 2013 EFSA J. 11 2818

    [12]

    Perez-Urquiza M, Beltran J L 2000 J. Chromatogr. A 898 271Google Scholar

    [13]

    Ozdemir Y, Akkan A A 1999 Turk. J. Chem. 23 221

    [14]

    Unsal Y E, Soylak M, Tuzen M 2015 Environ. Monit. Assess. 187 203Google Scholar

    [15]

    Yoshioka N, Ichihashi K 2008 Talanta 74 1408Google Scholar

    [16]

    Liu E, Fan X, Yang Z, Han L, Li S, Huang Y, Liao K, Cai L 2022 Spectrochim. Acta, Part A 276 121229Google Scholar

    [17]

    Zhang Y, Yang Z, Zou Y, Farooq S, Li Y, Zhang H 2023 Food Chem. 412 135563Google Scholar

    [18]

    Wang C M, Roy P K, Juluri B K, Chattopadhyay S 2018 Sens. Actuators, B 261 218Google Scholar

    [19]

    Koberling F, Gryczynski Z K, Gregor I, Berer T, Klar T A, Jacak J, Buchegger B, Langer G 2019 Proc. SPIE 10884 18840UGoogle Scholar

    [20]

    Campion A, Kambhampati P 1998 Chem. Soc. Rev. 27 241Google Scholar

    [21]

    Schlucker S 2014 Angew. Chem. Int. Ed. 53 4756Google Scholar

    [22]

    Kanipe K N, Chidester P P, Stucky G D, Moskovits M 2016 ACS Nano 10 7566Google Scholar

    [23]

    Cho W J, Kim Y, Kim J K 2012 ACS Nano 6 249Google Scholar

    [24]

    Xie S, Chen D, Gu C, Jiang T, Zeng S, Wang Y Y, Ni Z, Shen X, Zhou J 2021 ACS Appl. Mater. Interfaces 13 33345Google Scholar

    [25]

    Wang Y, Zhang M, Yu H, Zuo Y, Gao J, He G, Sun Z 2019 Appl. Catal. B 252 174Google Scholar

    [26]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [27]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [28]

    Jing X X, Li D Q, Zhang Y, Hou X Y, Jiang J, Fan X C, Wang M C, Feng S P, Yu Y F, Lu J P, Hu Z L, Ni Z H 2021 Chin. Phys. Lett. 38 074203Google Scholar

    [29]

    Jiao A, Cui Q, Li S, Tian Y, Ma H, Wang C, Zhang M, Chen M, Li G, Liu X 2022 Opt. Express 30 588Google Scholar

    [30]

    Yu D, Xu L, Zhang H, Li J, Wang W, Yang L, Jiang X, Zhao B 2023 Chin. Chem. Lett. 34 107771Google Scholar

    [31]

    Xue W, Han B, Ma H, Hou X, Wang J J, Li R, Zhang Y 2023 Chem. Eng. J. Adv. 13 100440Google Scholar

    [32]

    Ji S, Kou S, Wang M, Qiu H, Sun X, Dou J, Yang Z 2019 Appl. Surf. Sci. 489 1002Google Scholar

    [33]

    Xu L, Zhang H, Tian Y, Jiao A, Li S, Tan Y, Chen M, Chen F 2020 Talanta 209 120535Google Scholar

    [34]

    Zhang H, Li G, Li S, Xu L, Tian Y, Jiao A, Liu X, Chen F, Chen M 2018 Appl. Surf. Sci. 457 684Google Scholar

    [35]

    Peng Q, Ji W, De S 2012 Comput. Mater. Sci. 56 11Google Scholar

    [36]

    Cai Q R, Scullion D, Gan W, Falin A, Zhang S Y, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H 2019 Science Advances 5 eaav0129Google Scholar

    [37]

    Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Yu T, Ajayan P M, Tour J M 2014 Nano Res. 7 1232Google Scholar

    [38]

    Cai Q R, Scullion D, Gan W, Falin A, Cizek P, Liu S, Edgar J H, Liu R, Cowie B C C, Santos E J G, Li L H 2020 Phys. Rev. Lett. 125 085902Google Scholar

    [39]

    Li L H, Xing T, Chen Y, Jones R 2014 Adv. Mater. Interfaces 1 1300132Google Scholar

    [40]

    Shen L, Zhao Y, Wang Y, Song R, Yao Q, Chen S, Chai Y 2016 J. Mater. Chem. A 4 5044Google Scholar

    [41]

    Cai Q, Du A, Gao G, et al. 2016 Adv. Funct. Mater. 26 8202Google Scholar

    [42]

    Li L H, Cervenka J, Watanabe K, Taniguchi T, Chen Y 2014 ACS Nano 8 1457Google Scholar

    [43]

    Dai P, Xue Y, Wang X, Weng Q, Zhang C, Jiang X, Tang D, Wang X, Kawamoto N, Ide Y, Mitome M, Golberg D, Bando Y 2015 Nanoscale 7 18992Google Scholar

    [44]

    Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar

    [45]

    Blase X, Rubio A, Louie S G, Cohen M L 1995 Phys. Rev. B: Condens. Matter Mater. Phys. 51 6868Google Scholar

    [46]

    Han W Q, Wu L, Zhu Y, Watanabe K, Taniguchi T 2008 Appl. Phys. Lett. 93 223103Google Scholar

    [47]

    Cai Q, Gan W, Falin A, Watanabe K, Taniguchi T, Zhuang J, Hao W, Huang S, Tao T, Chen Y, Li L H 2020 ACS Appl. Mater. Interfaces 12 21985Google Scholar

    [48]

    Madasu M, Hsieh P L, Chen Y J, Huang M H 2019 ACS Appl. Mater. Interfaces 11 38039Google Scholar

    [49]

    Xu L, Cui Q, Tian Y, Jiao A, Zhang M, Li S, Li H, Chen M 2021 Appl. Surf. Sci. 545 149054Google Scholar

    [50]

    Tian Y, Cui Q, Ma H, Jiao A, Wang C, Zhang M, Zheng L, Wang X, Li S, Li G, Chen M 2022 Appl. Surf. Sci. 578 152100Google Scholar

    [51]

    Li S, Zhao J, Liu G, Xu L, Tian Y, Jiao A, Chen M 2021 Adv. Nanotechnol. 32 125401Google Scholar

    [52]

    Tian Y, Zhang H, Xu L, Chen M, Chen F 2018 Opt. Lett. 43 635Google Scholar

    [53]

    Tian Y, Li X, Wang F, Gu C, Zhao Z, Si H, Jiang T 2021 J. Hazard. Mater. 403 124009Google Scholar

    [54]

    Chen Y, Liu H, Li X, Tang S, Gu C, Wei G, Jiang T, Zhou X 2021 Sens. Actuators, B 339 129856Google Scholar

    [55]

    Li X, Liu H, Chen Y, Gu C, Wei G, Zhou J, Jiang T 2021 ACS Sustainable Chem. Eng. 9 12885Google Scholar

    [56]

    Lin S, Lin X, Han S, He L, Zhao H, Zhang J, Hasi W, Wang L 2019 J. Alloys Compd. 805 318Google Scholar

    [57]

    Mei R, Wang Y, Yu Q, Yin Y, Zhao R, Chen L 2020 ACS Appl. Mater. Interfaces 12 2059Google Scholar

    [58]

    Yang Y, Liu J, Fu Z W, Qin D 2014 J. Am. Chem. Soc. 136 8153Google Scholar

    [59]

    Gu H, Tang M, Qin L, Kang S Z, Li X 2022 Environ. Res. 204 112289Google Scholar

    [60]

    Cui X, Li J, Li Y, Liu M, Qiao J, Wang D, Cao H, He W, Feng Y, Yang Z 2022 Spectrochim. Acta, Part A 266 120432Google Scholar

    [61]

    Natan M J 2006 Faraday Discuss. 132 321Google Scholar

    [62]

    Wei W, Wang Y, Ji J, Zuo S, Li W, Bai F, Fan H 2018 Nano Lett. 18 4467Google Scholar

  • [1] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [2] 刘文英, 王公堂, 段鹏怡, 张文杰, 张灿, 胡晓璇, 刘玫. F4TCNQ/MoS2纳米复合异质材料的表面结构对SERS的影响. 物理学报, 2023, 72(3): 037402. doi: 10.7498/aps.72.20221958
    [3] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [4] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [5] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [6] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [7] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制. 物理学报, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [8] 赵星, 郝祺, 倪振华, 邱腾. 单分子表面增强拉曼散射的光谱特性及分析方法. 物理学报, 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [9] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [10] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [11] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [12] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [13] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [14] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用. 物理学报, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [15] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [16] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [17] 郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊. 锥柱型光纤探针在表面增强拉曼散射方面的应用. 物理学报, 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [18] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究. 物理学报, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [19] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应. 物理学报, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [20] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
计量
  • 文章访问数:  2649
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-07
  • 修回日期:  2023-08-04
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-11-20

/

返回文章
返回