搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

10 nm金属氧化物半导体场效应晶体管中的热噪声特性分析

贾晓菲 魏群 张文鹏 何亮 武振华

引用本文:
Citation:

10 nm金属氧化物半导体场效应晶体管中的热噪声特性分析

贾晓菲, 魏群, 张文鹏, 何亮, 武振华

Analysis of thermal noise characteristics in 10 nm metal oxide semiconductor field effect transistor

Jia Xiao-Fei, Wei Qun, Zhang Wen-Peng, He Liang, Wu Zhen-Hua
PDF
HTML
导出引用
  • 随着金属氧化物半导体场效应晶体管(MOSFET)器件等比例缩小至纳米级的较小尺寸, 一方面导致的短沟道效应已严重影响热噪声; 另一方面使栅、源、漏区及衬底区的热噪声占有比越来越高, 而传统热噪声模型主要考虑较大尺寸器件的沟道热噪声, 且其模型未考虑到沟道饱和区. 本文针对小尺寸纳米级MOSFET器件, 并根据器件结构特征和热噪声的基本特性, 建立了10 nm器件的热噪声模型, 该模型体现沟道区、衬底区及栅、源、漏区, 同时考虑到沟道饱和区的热噪声. 在模型的基础上, 分析沟道热噪声、总热噪声随偏置参量及器件参数之间的关系, 验证了沟道饱和区热噪声的存在, 并与已有实验结果一致, 所得结论有助于提高纳米级小尺寸MOSFET器件的工作效率、寿命及响应速度等.
    Small size metal-oxide-semiconductor field effect transistor (MOSFET), owing to their high theoretical efficiency and low production cost, have received much attention and are at the frontier of transistors. At present, their development is bottlenecked by physical limits due to equal scaling down of devices, which requires further improvement in terms of materials choice and device fabrication. As the MOSFET devices scale down to nanometer scale, on the one hand, the resulting short channel effect affects severely the thermal noise property; on the other hand, it makes the ratio of thermal noise in the gate, source, drain and substrate regions become higher and higher. However, the traditional thermal noise model mainly considers thermal noise of large-size devices, and its model does not consider the channel saturation region. In view of this, it is necessary to establish a small size MOSFET thermal noise model and analyze its characteristics.At present, there are some researches on MOSFET thermal noise, but they mainly focus on the thermal noise in channel region of large size nanoscale MOSFET. In the present work, according to the device structure and inherent thermal noise characteristics, we establish a thermal noise model for MOSFETs of 10 nm feature size. The model includes contributions of substrate region, gate-source-drain region, and channel region. In the channel region is also included the thermal noise related to the device saturation regime. Using such a model, the dependence of channel thermal noise and total thermal noise on the device bias condition and device parameters are investigated, evidencing the existence of thermal noise in the device saturation regime, which are consistent with the experimental results in the literature. The thermal noise increases with the gate voltage and source-drain voltage rising as the device structure shrinks. In a temperature range of 100–400 K, the thermal noise is basically on the order of 1021, indicating that the temperature has a great influence on the thermal noise. The thermal noise model established in this work can be applied to analyzing the noise performances of small size MOSFET devices, and the conclusions drawn from the present study are beneficial to improving the efficiency, lifetime, and response speed of MOSFETs on a nanometer scale.
      通信作者: 贾晓菲, jiaxiaofei-ab@163.com
    • 基金项目: 国家自然科学基金(批准号: 11965005, 11964026)、陕西省自然科学基金(批准号: 2023-JC-YB-021, 2020JM-621)和中央高校基本科研业务费专项资金资助的课题.
      Corresponding author: Jia Xiao-Fei, jiaxiaofei-ab@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11965005, 11964026), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2023-JC-YB-021, 2020JM-621), and the Fundamental Research Funds for the Central Universities of China.
    [1]

    Navid R, Dutton R W 2002 Simul. Semicond. Processes Dev. 2 75Google Scholar

    [2]

    Panda S, Maji B, Mukhopadhyay A K 2012 Int. J. Emerg. Technol. Adv. Eng. 12 107Google Scholar

    [3]

    Liu W, Padovani A, Larcher L, Raghavan N 2014 IEEE Electron Dev. Lett. 35 157Google Scholar

    [4]

    Koyama M 2015 Ph. D. Dissertation (Tokyo: Tokyo Institute of Technology

    [5]

    Zhang Y Q, Sun Q 1993 Noise in Semiconductor Devices and Its Low Noise Technology (Beijing: National Defense Industry Press) p38 [庄奕琪, 孙青 1993 半导体器件中的噪声及其低噪声化技术(北京: 国防工业出版社)第38页

    Zhang Y Q, Sun Q 1993 Noise in Semiconductor Devices and Its Low Noise Technology (Beijing: National Defense Industry Press) p38

    [6]

    Dabhi C K, Dasgupta A, Pragya K, Harshit A, Chenming H, Yogesh S C 2018 IEEE Microw. Wirel. Co. 28 597Google Scholar

    [7]

    Myeong I, Kim J, Ko H 2020 IEEE T. Comput. Aid. D 39 4351Google Scholar

    [8]

    Kenji O, Shuhei A 2021 IEEE T. Electron Dev. 68 1478Google Scholar

    [9]

    Schmid M, Bhogaraju S K, Hanss A, Elger G 2021 IEEE T. Instrum. Meas. 70 6500409Google Scholar

    [10]

    Navid R, Jungemann C, Lee T, Thomas H, Robert W 2007 J. Appl. Phys. 101 124501Google Scholar

    [11]

    Mahajan V M, Patalay P R, Jindal R P 2012 IEEE T. Electron Dev. 59 197Google Scholar

    [12]

    张梦, 姚若河, 刘玉荣 2020 物理学报 69 057101Google Scholar

    Zhang M, Yao R K, Liu Y R 2020 Acta Phys. Sin. 69 057101Google Scholar

    [13]

    Chen X , Elgabra H, Chen C H, Baugh J, Wei L 2021 IEEE ISCAS 5 22Google Scholar

    [14]

    王军, 王林, 王丹丹 2016 物理学报 23 237102Google Scholar

    Wang J, Wang L, Wang D D 2016 Acta Phys. Sin. 23 237102Google Scholar

    [15]

    Pahim V C, Galup-Montoro C, Schneider M C 2022 Nanotech 3 876

    [16]

    Jeon J, Lee J, Kim J, Park C H, Shin H 2009 Symposium on VLSI Technology Kyoto, Japan, June 15–17, 2009 p48

    [17]

    Knoblinger G, Klein P, Tiebout M 2001 IEEE J. Solid St. Circ. 36 831Google Scholar

    [18]

    Ji Y, Nan L, Mouthaan K 2009 Asia Pacific Microwave Conference, Singapore, December 7–10, 2009 p1659

    [19]

    Ong S. N, Yeo K S, Chew K W, Chan L H K, Boon C C International Symposium on Integrated Circuits and Systems, Paris, France, February 2–4, 2010 p306

    [20]

    Rahman A, Lundstrom M 2002 IEEE T. Electron Dev. 49 481Google Scholar

    [21]

    Andersson S, Svensson C 2005 Electron Lett. 41 869Google Scholar

    [22]

    Jeon J, Lee D, Park B, Shin H 2007 Solid State Electron. 51 1034Google Scholar

    [23]

    Paim V C, Galup-Montoro C, Schneider M C 2006 NSTI Nanotech. 3 876

    [24]

    Roy A S, Enz C C 2005 IEEE T. Electron Dev. 52 611Google Scholar

    [25]

    Chen C H, Chen D, Lee R, Lei P, Wan D IEEE Custom Integrated Circuits Conference San Jose, CA, USA, November 11, 2013 p6658426

  • 图 1  MOSFET结构示意图

    Fig. 1.  MOSFET structure diagram.

    图 2  MOSFET热噪声电路图

    Fig. 2.  MOSFET thermal noise circuit diagram.

    图 3  沟道热噪声与器件结构和偏置参量的关系 (a)沟道热噪声与栅极电压关系图; (b)沟道热噪声与源漏电压关系图; (c)沟道热噪声与沟道长度关系图; (d)沟道热噪声与温度关系图

    Fig. 3.  Relationship between channel thermal noise and device structure and bias parameters: (a) Relationship between channel thermal noise and gate voltage; (b) relationship between channel thermal noise and source-drain voltage; (c) relationship between channel thermal noise and channel length voltage; (d) relationship between channel thermal noise and temperature voltage.

    图 4  总热噪声与器件结构和偏置参量的关系 (a)热噪声与栅极电压关系图; (b)热噪声与源漏电压关系图; (c)热噪声与沟道长度关系图; (d)热噪声与温度关系图

    Fig. 4.  Relationship between total thermal noise and device structure and bias parameters: (a) Relationship between thermal noise and gate voltage; (b) relationship between thermal noise and source-drain voltage; (c) relationship between thermal noise and channel length voltage; (d) relationship between thermal noise and temperature voltage.

    表 1  MOSFET沟道热噪声值

    Table 1.  Channel thermal noise in MOSFET.

    VGS/V (0—1.2 V) VDS/V (0—2 V) L/nm (10—100 nm) T/K (100—400 K)
    SI, ch1 SI, ch2 SI, ch1 SI, ch2 SI, ch1 SI, ch2 SI, ch1 SI, ch2
    2.00×10–23 2.50×10–21 1.49×10–22 3.02×10–21 3.94×10–22 1.22×10–21 6.48×10–22 2.62×10–21
    2.84×10–22 2.61×10–21 1.52×10–21 3.52×10–21 1.64×10–22 8.47×10–22 6.69×10–22 2.52×10–21
    5.48×10–22 2.72×10–21 1.90×10–21 3.51×10–21 1.23×10–22 6.48×10–22 6.90×10–22 2.42×10–21
    8.12×10–22 2.83×10–21 2.12×10–21 3.50×10–21 9.93×10–23 5.25×10–22 7.12×10–22 2.42×10–21
    1.08×10–21 2.94×10–21 2.26×10–21 3.50×10–21 8.35×10–23 4.42×10–22 7.64×10–22 2.41×10–21
    1.34×10–21 3.05×10–21 2.36×10–21 3.49×10–21 7.22×10–23 3.81×10–22 7.86×10–22 2.41×10–21
    1.60×10–21 3.16×10–21 2.45×10–21 3.48×10–21 6.36×10–23 3.35×10–22 7.78×10–22 2.40×10–21
    1.87×10–21 3.27×10–21 2.51×10–21 3.48×10–21 5.69×10–23 2.99×10–22 7.76×10–22 2.40×10–21
    2.13×10–21 3.38×10–21 2.56×10–21 3.47×10–21 5.14×10–23 2.70×10–22 7.74×10–22 2.39×10–21
    2.40×10–21 3.49×10–21 2.61×10–21 3.47×10–21 4.69×10–23 2.46×10–22 7.72×10–22 2.37×10–21
    下载: 导出CSV
  • [1]

    Navid R, Dutton R W 2002 Simul. Semicond. Processes Dev. 2 75Google Scholar

    [2]

    Panda S, Maji B, Mukhopadhyay A K 2012 Int. J. Emerg. Technol. Adv. Eng. 12 107Google Scholar

    [3]

    Liu W, Padovani A, Larcher L, Raghavan N 2014 IEEE Electron Dev. Lett. 35 157Google Scholar

    [4]

    Koyama M 2015 Ph. D. Dissertation (Tokyo: Tokyo Institute of Technology

    [5]

    Zhang Y Q, Sun Q 1993 Noise in Semiconductor Devices and Its Low Noise Technology (Beijing: National Defense Industry Press) p38 [庄奕琪, 孙青 1993 半导体器件中的噪声及其低噪声化技术(北京: 国防工业出版社)第38页

    Zhang Y Q, Sun Q 1993 Noise in Semiconductor Devices and Its Low Noise Technology (Beijing: National Defense Industry Press) p38

    [6]

    Dabhi C K, Dasgupta A, Pragya K, Harshit A, Chenming H, Yogesh S C 2018 IEEE Microw. Wirel. Co. 28 597Google Scholar

    [7]

    Myeong I, Kim J, Ko H 2020 IEEE T. Comput. Aid. D 39 4351Google Scholar

    [8]

    Kenji O, Shuhei A 2021 IEEE T. Electron Dev. 68 1478Google Scholar

    [9]

    Schmid M, Bhogaraju S K, Hanss A, Elger G 2021 IEEE T. Instrum. Meas. 70 6500409Google Scholar

    [10]

    Navid R, Jungemann C, Lee T, Thomas H, Robert W 2007 J. Appl. Phys. 101 124501Google Scholar

    [11]

    Mahajan V M, Patalay P R, Jindal R P 2012 IEEE T. Electron Dev. 59 197Google Scholar

    [12]

    张梦, 姚若河, 刘玉荣 2020 物理学报 69 057101Google Scholar

    Zhang M, Yao R K, Liu Y R 2020 Acta Phys. Sin. 69 057101Google Scholar

    [13]

    Chen X , Elgabra H, Chen C H, Baugh J, Wei L 2021 IEEE ISCAS 5 22Google Scholar

    [14]

    王军, 王林, 王丹丹 2016 物理学报 23 237102Google Scholar

    Wang J, Wang L, Wang D D 2016 Acta Phys. Sin. 23 237102Google Scholar

    [15]

    Pahim V C, Galup-Montoro C, Schneider M C 2022 Nanotech 3 876

    [16]

    Jeon J, Lee J, Kim J, Park C H, Shin H 2009 Symposium on VLSI Technology Kyoto, Japan, June 15–17, 2009 p48

    [17]

    Knoblinger G, Klein P, Tiebout M 2001 IEEE J. Solid St. Circ. 36 831Google Scholar

    [18]

    Ji Y, Nan L, Mouthaan K 2009 Asia Pacific Microwave Conference, Singapore, December 7–10, 2009 p1659

    [19]

    Ong S. N, Yeo K S, Chew K W, Chan L H K, Boon C C International Symposium on Integrated Circuits and Systems, Paris, France, February 2–4, 2010 p306

    [20]

    Rahman A, Lundstrom M 2002 IEEE T. Electron Dev. 49 481Google Scholar

    [21]

    Andersson S, Svensson C 2005 Electron Lett. 41 869Google Scholar

    [22]

    Jeon J, Lee D, Park B, Shin H 2007 Solid State Electron. 51 1034Google Scholar

    [23]

    Paim V C, Galup-Montoro C, Schneider M C 2006 NSTI Nanotech. 3 876

    [24]

    Roy A S, Enz C C 2005 IEEE T. Electron Dev. 52 611Google Scholar

    [25]

    Chen C H, Chen D, Lee R, Lei P, Wan D IEEE Custom Integrated Circuits Conference San Jose, CA, USA, November 11, 2013 p6658426

  • [1] 王银霞, 白小川, 张勇, 李国庆. Al纳米颗粒高频局域等离激元效应对BCzVBi深蓝光有机发光器件发光效率的影响. 物理学报, 2024, 73(3): 037802. doi: 10.7498/aps.73.20230858
    [2] 熊凡, 陈永聪, 敖平. 热噪声环境下偶极场驱动的量子比特动力学. 物理学报, 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [3] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [4] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [5] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [6] 黄军超, 汪凌珂, 段怡菲, 黄亚峰, 刘亮, 李唐. 光纤1/f 热噪声的实验研究. 物理学报, 2019, 68(5): 054205. doi: 10.7498/aps.68.20181838
    [7] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计. 物理学报, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [8] 谢文贤, 许鹏飞, 蔡力, 李东平. 随机双指数记忆耗散系统的非马尔可夫扩散. 物理学报, 2013, 62(8): 080503. doi: 10.7498/aps.62.080503
    [9] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型. 物理学报, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [10] 辛艳辉, 刘红侠, 范小娇, 卓青青. 非对称Halo异质栅应变Si SOI MOSFET的二维解析模型. 物理学报, 2013, 62(15): 158502. doi: 10.7498/aps.62.158502
    [11] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响. 物理学报, 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [12] 刘兴辉, 张俊松, 王绩伟, 敖强, 王震, 马迎, 李新, 王振世, 王瑞玉. 基于非平衡Green函数理论的峰值掺杂-低掺杂漏结构碳纳米管场效应晶体管输运研究. 物理学报, 2012, 61(10): 107302. doi: 10.7498/aps.61.107302
    [13] 贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪. 准弹道输运纳米MOSFET散粒噪声的抑制研究. 物理学报, 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [14] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应. 物理学报, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [15] 唐冬和, 杜磊, 王婷岚, 陈华, 陈文豪. 纳米尺度MOSFET过剩噪声的定性分析. 物理学报, 2011, 60(10): 107201. doi: 10.7498/aps.60.107201
    [16] 李劲, 刘红侠, 李斌, 曹磊, 袁博. 高k栅介质应变Si SOI MOSFET的阈值电压解析模型. 物理学报, 2010, 59(11): 8131-8136. doi: 10.7498/aps.59.8131
    [17] 安兴涛, 李玉现, 刘建军. 介观物理系统中的噪声. 物理学报, 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [18] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [19] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型. 物理学报, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [20] 罗诗裕, 邵明珠. 弯晶的沟道效应. 物理学报, 1986, 35(8): 1002-1009. doi: 10.7498/aps.35.1002
计量
  • 文章访问数:  2390
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-24
  • 修回日期:  2023-09-12
  • 上网日期:  2023-10-12
  • 刊出日期:  2023-11-20

/

返回文章
返回