搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO薄膜的制备及电输运性质

蔡文博 杨洋 李志青

引用本文:
Citation:

TiO薄膜的制备及电输运性质

蔡文博, 杨洋, 李志青

Preparation and electrical transport properties of TiO thin films

Cai Wen-Bo, Yang Yang, Li Zhi-Qing
PDF
HTML
导出引用
  • 利用磁控溅射技术, 通过改变氧分压在MgO (001) 单晶基片上外延生长了一系列TiO薄膜, 并对薄膜的结构、价态和电输运性质进行了系统研究. X射线衍射结果表明, 所制备的薄膜具有岩盐结构, 沿[001]晶向外延生长. X射线光电子能谱结果表明, 薄膜中Ti元素主要以二价形式存在. 所有样品均具有负的电阻温度系数, 高氧分压下制备的薄膜表现出绝缘体的导电性质, 低温下电阻与温度的关系遵从变程跳跃导电规律. 低氧分压下制备的薄膜具有金属导电性质, 并具有超导电性, 超导转变温度最高可达3.05 K. 所有样品均具有较高的载流子浓度, 随着氧分压的降低, 薄膜的载流子类型由电子主导转变为空穴主导. 氧含量的降低可能加强了TiO中Ti—Ti键的作用, 从而使低氧分压下制备的样品显现出与金属Ti相似的电输运性质, 薄膜超导转变温度的提升可能与晶体结构或电子结构突变相关联.
    Titanium monoxide has attracted great attention due to its unique superconducting characteristics and potential applications in microelectronics. In this work, a series of TiO thin films are prepared at room temperature by using the radio frequency magnetron sputtering method through changing the oxygen partial pressures. The crystal structures, valences of the elements, and electrical transport properties of the films are investigated systematically. X-ray diffraction results indicate that the films are epitaxially grown on MgO single crystal substrates along the [001] direction. After the surface of the TiO film is treated by ion etching, it is found that the Ti element mainly exists in a divalent form. For all films, the temperature coefficients of resistance are negative above superconducting transition temperature Tc. The films prepared under high oxygen partial pressures reveal insulator characteristics, and the temperature dependence of resistivity obeys the Mott-type variable-range-hopping law in low temperature regime. The films prepared under low oxygen partial pressures exhibit metallic properties, and enter into a superconducting state at low temperature. The superconducting transition temperature Tc in our film can be as high as 3.05 K. The carrier concentrations of the films are in the vicinity of ~2.0×1022 cm–3, which is comparable to those for the typical metals. Interestingly, it is found that the main species of the charge carriers in the films transforms from electrons to holes with the oxygen partial pressure decreasing. The crossover of the species of the charge carriers could related to the changing of energy-band structure with the oxygen content in TiO film.
      通信作者: 李志青, zhiqinqli@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174282) 资助的课题.
      Corresponding author: Li Zhi-Qing, zhiqinqli@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174282).
    [1]

    Reed T B, Banus M D, Sjöstrand M, Keesom P H 1972 J. Appl. Phys. 43 2478Google Scholar

    [2]

    Valeeva A A, Rempel A A, Gusev A I 2001 JETP Lett. 73 621Google Scholar

    [3]

    Doyle N J, Hulm J K, Jones C K, Miller R C, Taylor A 1968 Phys. Lett. A 26 604

    [4]

    Banus M D, Reed T B, Strauss A J 1972 Phys. Rev. B 5 2775Google Scholar

    [5]

    Hulm J K, Jones C K, Hein R A, Gibson J W 1972 J. Low Temp. Phys. 7 291Google Scholar

    [6]

    Zhang C, Hao F X, Gao G Y, Liu X, Ma C, Lin Y, Yin Y W, Li X G 2017 npj Quantum Mater. 2 2Google Scholar

    [7]

    Liu X, Zhang C, Hao F X, Wang T Y, Fan Y J, Yin Y W, Li X G 2017 Phys. Rev. B 96 104505Google Scholar

    [8]

    Fan Y J, Ma C, Wang T Y, Zhang C, Chen Q L, Liu X, Wang Z Q, Li Q, Yin Y W, Li X G 2018 Phys. Rev. B 98 064501Google Scholar

    [9]

    Fan Y J, Zhang C, Liu X, Lin Y, Gao G Y, Ma C, Yin Y W, Li X G 2019 J. Alloys Compd. 786 607Google Scholar

    [10]

    Wang D, Huang C, He J Q, Che X L, Zhang H, Huang F Q 2017 ACS Omega 2 1036Google Scholar

    [11]

    Xu J, Wang D, Yao H, Bu K, Pan J, He J Q, Xu F, Hong Z, Chen X, Huang F Q 2018 Adv. Mater. 30 1706240Google Scholar

    [12]

    Li F, Zou Y, Han M G, Foyevtsova K, Shin H, Lee S, Liu C, Shin K, Albright S D, Sutarto R, He F, Davidson B A, Walker F J, Ahn C H, Zhu Y, Cheng Z G, Elfimov I, Sawatzky G A, Zou K 2021 Sci. Adv. 7 eabd4248Google Scholar

    [13]

    Zhang C, Fan Y J, Chen Q, Wang T Y, Liu X, Li Q, Yin Y W, Li X G 2019 NPG Asia Mater. 11 76Google Scholar

    [14]

    Zhang C, Hao F X, Liu X, Fan Y J, Wang T Y, Yin Y W, Li X G 2018 Supercond. Sci. Technol. 31 015016Google Scholar

    [15]

    Grigorov K G, Grigorov G I, Drajeva L, Bouchier D, Sporkend R, Caudano R 1998 Vacuum 51 153Google Scholar

    [16]

    Banakh O, Schmid P E, Sanjines R, Levy F 2002 Surf. Coat. Technol. 151 272

    [17]

    Bulyarskiy S V, Koiva D A, Belov V S, Zenova E V, Rudakov G А, Gusarov G G 2021 J. Vac. Sci. Technol. A 39 053403Google Scholar

    [18]

    Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502Google Scholar

    [19]

    Yang J, Strukov D, Stewart D 2013 Nat. Nanotechnol. 8 13Google Scholar

    [20]

    Assim E M 2008 J. Alloys Compd. 465 1Google Scholar

    [21]

    Nguyen T T N, Chen Y H, He J L 2014 Thin Solid Films 572 8Google Scholar

    [22]

    Okinaka N, Akiyama T 2006 Jpn. J. Appl. Phys. 45 7009Google Scholar

    [23]

    He Q, Hao Q, Chen G, Poudel B, Wang X, Wang D, Ren Z 2007 Appl. Phys. Lett. 91 052505Google Scholar

    [24]

    Okinaka N, Akiyama T 2010 ISIJ Int. 50 1296Google Scholar

    [25]

    Shklovskii B I, Efros A L 1984 Electronic Properties of Doped Semiconductors (Berlin: Springer) pp180–222

    [26]

    Gantmakher V F 2005 Electrons and Disorder in Solids (Oxford: Clarendon) pp58–73

    [27]

    Kuznetsov M V, Zhuravlev J F, Zhilyaev V A, Gubanov V A 1992 J. Electron Spectrosc. Relat. Phenomena 58 1Google Scholar

    [28]

    Netterfield R P, Martin P J, Pacey C G, Sainty W G, McKenzie D R, Auchterlonie G 1989 J. Appl. Phys. 66 1805Google Scholar

    [29]

    Möbius A 1989 Phys. Rev. B 40 4194Google Scholar

    [30]

    Sachser R, Porrati F, Schwalb C H, Huth M 2011 Phys. Rev. Lett. 107 206803Google Scholar

    [31]

    Kittel C 2005 Introduction to Solid State Physics (Hoboken: John Wiley) p155

    [32]

    Foner S 1957 Phys. Rev. 107 1513Google Scholar

    [33]

    Berlincourt T G 1959 Phys. Rev. 114 969Google Scholar

    [34]

    Scovil G W 1966 Appl. Phys. Lett. 9 247Google Scholar

    [35]

    Huang Y L, Chiu S P, Zhu Z X, Li Z Q, Lin J J 2010 J. Appl. Phys. 107 063715Google Scholar

  • 图 1  不同氧分压下制备的TiO薄膜样品的XRD测量结果 (a) θ-2θ图谱; (b) 晶格常数与氧分压的关系; (c) 代表性样品3# (311)晶面的φ扫描图谱; (d) 代表性样品3# (002)晶面的ω扫描图谱, 实线为高斯拟合结果

    Fig. 1.  XRD results for TiO thin films prepared under different oxygen partial pressures: (a) θ-2θ pattern; (b) relationship between lattice constant and oxygen partial pressure; (c) φ scan pattern of the representative sample 3# along (311) crystal face; (d) ω scan pattern of the representative sample 3# along (002) crystal face, the solid curve is the Gaussian fitting result.

    图 2  TiO薄膜的XPS图谱 (a), (b) 代表性样品3# (低氧分压下制备的样品) 氩离子刻蚀前后Ti 2p轨道和O 1s轨道的精细图谱; (c) 样品1#和2#刻蚀后Ti 2p轨道的精细图谱, 图中倒三角型符号标注了Ti 2p3/2峰的位置, Ti 2p1/2峰的位置用*标注

    Fig. 2.  XPS spectra of TiO thin films: (a), (b) Spectra of Ti 2p and O 1s orbitals for the representative sample 3# (prepared under low oxygen partial pressure) before and after argon ion etching; (c) XPS spectra of Ti 2p orbitals of samples 1# and 2# after etching, the position of Ti 2p3/2 peak is marked by the inverted triangle symbol and the position of Ti 2p1/2 peak is marked with *

    图 3  (a) TiO薄膜样品的归一化电阻率ρ/ρ(300 K)与温度T的关系, 插图为1#样品电阻率ρ随温度的变化关系; (b) 6 K以下样品3#—6#的电阻率随温度的变化关系

    Fig. 3.  (a) Normalized resistivity ρ/ρ(300 K) of TiO thin films as a function of temperature T, the inset shows the relationship between resistivity ρ and temperature for sample 1#; (b) relationship between the resistivity and temperature of samples 3#–6# below 6 K.

    图 4  样品1#—3#的${\text{d}}\ln \sigma {\text{/d}}\ln T$$ {T^{1/2}} $的变化关系

    Fig. 4.  Relationship between ${\text{d}}\ln \sigma {\text{/d}}\ln T$ and $ {T^{1/2}} $ for samples 1#–3#.

    图 5  250 K下TiO薄膜的Hall测量结果 (a) 横向电阻${R_{xy}}$随磁场${\mu _0}H$的变化; (b)样品的霍尔系数${R_{\text{H}}}$和载流子浓度n与氧分压的关系

    Fig. 5.  Hall measurement results of TiO thin films at 250 K: (a) Change in transverse resistance ${R_{xy}}$ as a function of magnetic field ${\mu _0}H$; (b) relationship between Hall coefficient ${R_{\text{H}}}$ and carrier concentration n of samples and oxygen partial pressure.

    图 6  (a) 10—100 K下, 样品1#的lnρ${T^{ - 1/4}}$的关系图, 实线为(1)式的最小二乘拟合结果; (b) 150—300 K下, 样品1#的lnρ与1000/T的关系图, 实线为(3)式的最小二乘拟合结果

    Fig. 6.  (a) Relationship between lnρ and ${T^{ - 1/4}}$ for sample 1# from 10 K to 100 K, with the solid line representing the least-squares fit of Eq. (1); (b) relationship between lnρ and 1000/T for sample 1# from 150 K to 300 K, with the solid line representing the least-squares fit of Eq. (3).

    表 1  TiO薄膜的基本参数, 其中t为薄膜平均厚度, $ {P_{{{\text{O}}_2}}} $为样品生长时的氧分压, a为晶格常数, ρ(300 K) 和ρ(5 K) 分别为300 K和5 K温度下样品的电阻率, ${T_{\text{c}}}$为超导样品的超导转变温度, ${R_{\text{H}}}$n分别为250 K下测得的霍尔系数和载流子浓度

    Table 1.  Basic parameters of TiO thin films, where t is the average thickness of the thin film, $ {P_{{{\text{O}}_2}}} $is the oxygen partial pressure during sample growth, a is the lattice constant, ρ(300 K) and ρ(5 K) are the resistivities of the sample at 300 K and 5 K, ${T_{\text{c}}}$ is the superconducting critical temperature of the superconducting sample, ${R_{\text{H}}}$and n are the Hall coefficient and carrier concentration measured at 250 K, respectively.

    样品 t/nm $ {P_{{{\text{O}}_2}}} $
    /(10–3 Pa)
    a ρ(300 K)
    /(mΩ·cm)
    ρ(5 K)
    /(mΩ·cm)
    ${T_{\text{c}}}$/K ${R_{\text{H}}}$
    /(10–10 m3·C–1)
    n
    /(1022 cm–3)
    1# 453.85 2.56 4.179 3.557 –2.610 2.380
    2# 400.05 1.92 4.192 0.322 0.603 –0.654 9.494
    3# 350.45 1.76 4.274 0.194 0.210 2.61 0.309 20.074
    4# 302.70 1.60 4.272 0.180 0.191 3.05 0.564 11.004
    5# 286.25 1.44 4.283 0.216 0.229 1.865 3.330
    6# 292.10 1.28 4.283 0.186 0.192 2.13 1.311 4.738
    下载: 导出CSV
  • [1]

    Reed T B, Banus M D, Sjöstrand M, Keesom P H 1972 J. Appl. Phys. 43 2478Google Scholar

    [2]

    Valeeva A A, Rempel A A, Gusev A I 2001 JETP Lett. 73 621Google Scholar

    [3]

    Doyle N J, Hulm J K, Jones C K, Miller R C, Taylor A 1968 Phys. Lett. A 26 604

    [4]

    Banus M D, Reed T B, Strauss A J 1972 Phys. Rev. B 5 2775Google Scholar

    [5]

    Hulm J K, Jones C K, Hein R A, Gibson J W 1972 J. Low Temp. Phys. 7 291Google Scholar

    [6]

    Zhang C, Hao F X, Gao G Y, Liu X, Ma C, Lin Y, Yin Y W, Li X G 2017 npj Quantum Mater. 2 2Google Scholar

    [7]

    Liu X, Zhang C, Hao F X, Wang T Y, Fan Y J, Yin Y W, Li X G 2017 Phys. Rev. B 96 104505Google Scholar

    [8]

    Fan Y J, Ma C, Wang T Y, Zhang C, Chen Q L, Liu X, Wang Z Q, Li Q, Yin Y W, Li X G 2018 Phys. Rev. B 98 064501Google Scholar

    [9]

    Fan Y J, Zhang C, Liu X, Lin Y, Gao G Y, Ma C, Yin Y W, Li X G 2019 J. Alloys Compd. 786 607Google Scholar

    [10]

    Wang D, Huang C, He J Q, Che X L, Zhang H, Huang F Q 2017 ACS Omega 2 1036Google Scholar

    [11]

    Xu J, Wang D, Yao H, Bu K, Pan J, He J Q, Xu F, Hong Z, Chen X, Huang F Q 2018 Adv. Mater. 30 1706240Google Scholar

    [12]

    Li F, Zou Y, Han M G, Foyevtsova K, Shin H, Lee S, Liu C, Shin K, Albright S D, Sutarto R, He F, Davidson B A, Walker F J, Ahn C H, Zhu Y, Cheng Z G, Elfimov I, Sawatzky G A, Zou K 2021 Sci. Adv. 7 eabd4248Google Scholar

    [13]

    Zhang C, Fan Y J, Chen Q, Wang T Y, Liu X, Li Q, Yin Y W, Li X G 2019 NPG Asia Mater. 11 76Google Scholar

    [14]

    Zhang C, Hao F X, Liu X, Fan Y J, Wang T Y, Yin Y W, Li X G 2018 Supercond. Sci. Technol. 31 015016Google Scholar

    [15]

    Grigorov K G, Grigorov G I, Drajeva L, Bouchier D, Sporkend R, Caudano R 1998 Vacuum 51 153Google Scholar

    [16]

    Banakh O, Schmid P E, Sanjines R, Levy F 2002 Surf. Coat. Technol. 151 272

    [17]

    Bulyarskiy S V, Koiva D A, Belov V S, Zenova E V, Rudakov G А, Gusarov G G 2021 J. Vac. Sci. Technol. A 39 053403Google Scholar

    [18]

    Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502Google Scholar

    [19]

    Yang J, Strukov D, Stewart D 2013 Nat. Nanotechnol. 8 13Google Scholar

    [20]

    Assim E M 2008 J. Alloys Compd. 465 1Google Scholar

    [21]

    Nguyen T T N, Chen Y H, He J L 2014 Thin Solid Films 572 8Google Scholar

    [22]

    Okinaka N, Akiyama T 2006 Jpn. J. Appl. Phys. 45 7009Google Scholar

    [23]

    He Q, Hao Q, Chen G, Poudel B, Wang X, Wang D, Ren Z 2007 Appl. Phys. Lett. 91 052505Google Scholar

    [24]

    Okinaka N, Akiyama T 2010 ISIJ Int. 50 1296Google Scholar

    [25]

    Shklovskii B I, Efros A L 1984 Electronic Properties of Doped Semiconductors (Berlin: Springer) pp180–222

    [26]

    Gantmakher V F 2005 Electrons and Disorder in Solids (Oxford: Clarendon) pp58–73

    [27]

    Kuznetsov M V, Zhuravlev J F, Zhilyaev V A, Gubanov V A 1992 J. Electron Spectrosc. Relat. Phenomena 58 1Google Scholar

    [28]

    Netterfield R P, Martin P J, Pacey C G, Sainty W G, McKenzie D R, Auchterlonie G 1989 J. Appl. Phys. 66 1805Google Scholar

    [29]

    Möbius A 1989 Phys. Rev. B 40 4194Google Scholar

    [30]

    Sachser R, Porrati F, Schwalb C H, Huth M 2011 Phys. Rev. Lett. 107 206803Google Scholar

    [31]

    Kittel C 2005 Introduction to Solid State Physics (Hoboken: John Wiley) p155

    [32]

    Foner S 1957 Phys. Rev. 107 1513Google Scholar

    [33]

    Berlincourt T G 1959 Phys. Rev. 114 969Google Scholar

    [34]

    Scovil G W 1966 Appl. Phys. Lett. 9 247Google Scholar

    [35]

    Huang Y L, Chiu S P, Zhu Z X, Li Z Q, Lin J J 2010 J. Appl. Phys. 107 063715Google Scholar

  • [1] 杨健, 高矿红, 李志青. La掺杂BaSnO3薄膜的低温电输运性质. 物理学报, 2023, 72(22): 227301. doi: 10.7498/aps.72.20231082
    [2] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [3] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [4] 周定邦, 刘新典, 李志青. 多晶TaN1-薄膜的电输运性质研究. 物理学报, 2015, 64(19): 197302. doi: 10.7498/aps.64.197302
    [5] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究. 物理学报, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [6] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积. 物理学报, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [7] 纳元元, 王聪, 褚立华, 丁磊, 闫君. 不同氮流量制备Mn3CuNx薄膜及其电、磁输运性质的研究. 物理学报, 2012, 61(3): 036801. doi: 10.7498/aps.61.036801
    [8] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性. 物理学报, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [9] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [10] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [11] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [12] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [13] 祖 敏, 张鹰子, 闻海虎. 薄膜厚度对La1.85Sr0.15CuO4薄膜结构和超导电性的影响. 物理学报, 2008, 57(11): 7257-7261. doi: 10.7498/aps.57.7257
    [14] 张 辉, 刘应书, 刘文海, 王宝义, 魏 龙. 基片温度与氧分压对磁控溅射制备氧化钒薄膜的影响. 物理学报, 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [15] 舒华兵, 刘 甦, 马 荣, 刘 楣. 第一性原理计算MgB2薄膜拉伸对超导电性的影响. 物理学报, 2007, 56(12): 7262-7265. doi: 10.7498/aps.56.7262
    [16] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究. 物理学报, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [17] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析. 物理学报, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [18] 胡 妮, 谢 卉, 汪丽莉, 林 颖, 熊 锐, 余祖兴, 汤五丰, 石 兢. Fe掺杂对自旋梯状化合物Sr14(Cu1-yFey)24O41的结构和电输运性质的影响. 物理学报, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [19] 周小莉, 杜丕一. 磁控溅射法制备的CaCu3Ti4O12薄膜. 物理学报, 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [20] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
计量
  • 文章访问数:  1020
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-02
  • 修回日期:  2023-08-06
  • 上网日期:  2023-09-05
  • 刊出日期:  2023-11-20

/

返回文章
返回