搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多晶TaN1-薄膜的电输运性质研究

周定邦 刘新典 李志青

引用本文:
Citation:

多晶TaN1-薄膜的电输运性质研究

周定邦, 刘新典, 李志青

Electrical transport properties of polycrystalline TaN1- films

Zhou Ding-Bang, Liu Xin-Dian, Li Zhi-Qing
PDF
导出引用
  • 利用射频溅射法在石英玻璃基底上制备了一系列面心立方结构的多晶TaN1-薄膜, 并对其晶体结构和2350 K温度范围的电子输运性质进行了系统研究. 薄膜呈多晶结构, 并且平均晶粒尺寸随着基底温度的升高逐渐增大. 电输运测量结果表明, TaN1-薄膜在5 K以下表现出类似超导体-绝缘体颗粒膜的电输运性质; 随着温度的升高, 薄膜在1030 K表现出类似金属-绝缘体颗粒膜的性质; 在70 K以上, 热涨落诱导的遂穿导电机理主导着电阻率的温度行为. 我们的结果表明: TaN1-多晶薄膜的类颗粒膜属性使其具有较高的电阻率和负的电阻温度系数.
    Tantalum nitride with a face-centered cubic structure (TaN1-) has received much attention due to its high hardness, good wear resistance, chemical inertness, thermodynamic stability, and low temperature coefficients of resistivity. First-principles calculations have indicated that cubic-TaN possesses metallic energy band structure, and the experimental results show that the carrier concentration in TaN1- films are comparable to that of normal metals. However, semiconductor-like temperature behavior of resistivity is often observed in polycrystalline TaN1- film. In the present paper, we systematically study the crystal structures and electrical transport properties of a series of TaN1- thin films, deposited on quartz glass substrates at different temperatures by the rf sputtering method. Both X-ray diffraction patterns and scanning electron microscope images indicate that the films are polycrystalline and have face-centered cubic structure. It is also found that the mean grain sizes of the films gradually increase with increasing depositing temperature. The temperature dependence of resistivity is measured from 350 K down to 2 K. The films with large grain sizes have a superconductor-insulator transition below ~ 5 K, while the films with small grain sizes retain the semiconductor characteristics down to the minimum measuring temperature, 2 K. These phenomena are similar to that observed in superconductor-insulator granular composites. Above 5 K, the temperature coefficients of the resistivities of the films are all negative. In the temperature range between 10 and 30 K, the films show hopping transport properties which are often seen in metal-insulator granular systems, i. e. the logarithm of the resistivity (log ) varies linearly with T-1/2, where T represents the measured temperature. The thermal fluctuation-induced tunneling conductive mechanism dominates the temperature behaviors of resistivities from 70 K up to 350 K. It can be seen that the thermal fluctuation induced tunneling conductive mechanism is also the main conductive mechanism in metal-insulator granular systems in the higher temperature regions. Our results indicate that the electrical transport properties of the polycrystalline TaN1- films are similar to that of metal-insulator granular films with different volume fractions of metal, where the metal possesses superconductivity at low temperatures. Hence the high resistivity and negative temperature coefficient of resistivity of TaN1- polycrystalline film can be reasonably ascribed to the similarity in microstructures between TaN1- polycrystalline film and metal-insulator granular film.
      通信作者: 刘新典, xindianliu@tju.edu.cn.
    • 基金项目: 国家自然科学基金(批准号: 11174216)和高校博士点基金(批准号: 20120032110065)资助的课题.
      Corresponding author: Liu Xin-Dian, xindianliu@tju.edu.cn.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174216) and Research Fund for the Doctoral Program of Higher Education of China (Grant No.20120032110065).
    [1]

    Baba K, Hatada R 1996 Surf. Coat. Technol. 84 429

    [2]

    Bozorg-Grayeli E, Li Z J, Asheghi M, Delgado G, Pokrovsky A, Panzer M, Wack D, Goodson K E 2011 Appl. Phys. Lett. 99 261906

    [3]

    Kwon J, Chabal Y J 2010 Appl. Phys. Lett. 96 151907

    [4]

    Engel A, Aeschbacher A, Inderbitzin K, Schilling A, Il'inK, Hofherr M, Siegel M, Semenov A, Hbers H W 2012 Appl. Phys. Lett. 100 062601

    [5]

    Chaudhuri S, Maasilta I J 2014 Appl. Phys. Lett. 104 122601

    [6]

    Shin C S, Gall D, Kim Y W, Desjardins P, Petrov I, Greene J E, Odn M, Hultman L 2001 J. Appl. Phys. 90 2879

    [7]

    Stampfl C, Mannstadt W, Asahi R, Freeman A J 2001 Phys. Rev. B 63 155106

    [8]

    Breznay N P, Michaeli K, Tikhonov K S, Finkel'stein A M, Tendulkar M, Kapitulnik A 2012 Phys. Rev. B 86 014514

    [9]

    Yu L, Stampfl C, Marshall D, Eshrich T, Narayanan V, Rowell J M, Newman N, Freeman A J 2002 Phys. Rev. B 65 245110

    [10]

    Tiwari A, Wang H, kumar D, Narayan J 2002 Mod. Phys. Lett.B 16 1143

    [11]

    Lal K, Ghosh P, Biswas D, Meikap A K, Chattopadhyay S K, Chatterjee S K, Ghosh M, Baba K, Hatada R 2004 Solid State Commun. 131 479

    [12]

    Sheng P, Abeles B 1972 Phys. Rev. Lett. 28 34

    [13]

    Sheng P, Abeles B, Arie Y 1973 Phys. Rev. Lett. 31 44

    [14]

    Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288

    [15]

    Altshuler B L, Aronov A G, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros, M. Pollak (Elsevier, Amsterdam, 1985) pp74-78

    [16]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    [17]

    Sheng P, Sichel E K, Gittleman J I 1978 Phys. Rev. Lett. 40 1197

    [18]

    Sheng P 1980 Phys. Rev. B 21 2180

    [19]

    Xie H, Sheng P 2009 Phys. Rev. B 79 165419

    [20]

    Liu X D, Liu J, Chen S, Li Z Q 2012 Appl. Surf. Sci. 263 486

    [21]

    Zheng X W, Li Z Q 2009 Appl. Surf. Sci. 255 8104

    [22]

    Sun X, Kolawa E, Chen J S, Reid J S, Nicolet M A 1993 Thin Solid Films 236 347

    [23]

    Sreenivasan R, Sugawara T, Saraswat K C, Mclntyre P C 2007 Appl. Phys. Lett. 90 102101

    [24]

    Nie H B, Xu S Y, Wang S J, You L P, Yang Z, Ong C K, Li J, Liew T Y F 2001 Appl. Phys. A 73 229

    [25]

    Gerstenberg D, Hall P M 1964 J. Electrochem. Soc. 111 936

    [26]

    Shapira Y, Deutscher G 1983 Phys. Rev. B 27 4463

    [27]

    Breznay N P, Kapitulnik A 2013 Phys. Rev. B 88 104510

    [28]

    Beloborodov I S, Lopatin A V, Vinokur V M, Efetov K B 2007 Rev. Mod. Phys. 79 469

    [29]

    Ivry Y, Kim C S, Dane A E, Fazio D D, McCaughan A N, Sunter K A, Zhao Q Y, Berggren K K 2014 Phys. Rev. B 90 214515

    [30]

    Lerer S, Bachar N, Deutscher G, Dagan Y 2014 Phys. Rev. B 90 214521

    [31]

    Yang X C, Riehemann W, Dubiel M, Hofmeister H 2002 Mater. Sci. Eng. B 95 299

    [32]

    Ederth J, Johnsson P, Niklasson G A, Hoel A, Hultker A, Heszler P, Granqvist C G, van Doorn A R, Jongerius M J, Burgard D 2003 Phys. Rev. B 68 155410

  • [1]

    Baba K, Hatada R 1996 Surf. Coat. Technol. 84 429

    [2]

    Bozorg-Grayeli E, Li Z J, Asheghi M, Delgado G, Pokrovsky A, Panzer M, Wack D, Goodson K E 2011 Appl. Phys. Lett. 99 261906

    [3]

    Kwon J, Chabal Y J 2010 Appl. Phys. Lett. 96 151907

    [4]

    Engel A, Aeschbacher A, Inderbitzin K, Schilling A, Il'inK, Hofherr M, Siegel M, Semenov A, Hbers H W 2012 Appl. Phys. Lett. 100 062601

    [5]

    Chaudhuri S, Maasilta I J 2014 Appl. Phys. Lett. 104 122601

    [6]

    Shin C S, Gall D, Kim Y W, Desjardins P, Petrov I, Greene J E, Odn M, Hultman L 2001 J. Appl. Phys. 90 2879

    [7]

    Stampfl C, Mannstadt W, Asahi R, Freeman A J 2001 Phys. Rev. B 63 155106

    [8]

    Breznay N P, Michaeli K, Tikhonov K S, Finkel'stein A M, Tendulkar M, Kapitulnik A 2012 Phys. Rev. B 86 014514

    [9]

    Yu L, Stampfl C, Marshall D, Eshrich T, Narayanan V, Rowell J M, Newman N, Freeman A J 2002 Phys. Rev. B 65 245110

    [10]

    Tiwari A, Wang H, kumar D, Narayan J 2002 Mod. Phys. Lett.B 16 1143

    [11]

    Lal K, Ghosh P, Biswas D, Meikap A K, Chattopadhyay S K, Chatterjee S K, Ghosh M, Baba K, Hatada R 2004 Solid State Commun. 131 479

    [12]

    Sheng P, Abeles B 1972 Phys. Rev. Lett. 28 34

    [13]

    Sheng P, Abeles B, Arie Y 1973 Phys. Rev. Lett. 31 44

    [14]

    Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288

    [15]

    Altshuler B L, Aronov A G, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros, M. Pollak (Elsevier, Amsterdam, 1985) pp74-78

    [16]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    [17]

    Sheng P, Sichel E K, Gittleman J I 1978 Phys. Rev. Lett. 40 1197

    [18]

    Sheng P 1980 Phys. Rev. B 21 2180

    [19]

    Xie H, Sheng P 2009 Phys. Rev. B 79 165419

    [20]

    Liu X D, Liu J, Chen S, Li Z Q 2012 Appl. Surf. Sci. 263 486

    [21]

    Zheng X W, Li Z Q 2009 Appl. Surf. Sci. 255 8104

    [22]

    Sun X, Kolawa E, Chen J S, Reid J S, Nicolet M A 1993 Thin Solid Films 236 347

    [23]

    Sreenivasan R, Sugawara T, Saraswat K C, Mclntyre P C 2007 Appl. Phys. Lett. 90 102101

    [24]

    Nie H B, Xu S Y, Wang S J, You L P, Yang Z, Ong C K, Li J, Liew T Y F 2001 Appl. Phys. A 73 229

    [25]

    Gerstenberg D, Hall P M 1964 J. Electrochem. Soc. 111 936

    [26]

    Shapira Y, Deutscher G 1983 Phys. Rev. B 27 4463

    [27]

    Breznay N P, Kapitulnik A 2013 Phys. Rev. B 88 104510

    [28]

    Beloborodov I S, Lopatin A V, Vinokur V M, Efetov K B 2007 Rev. Mod. Phys. 79 469

    [29]

    Ivry Y, Kim C S, Dane A E, Fazio D D, McCaughan A N, Sunter K A, Zhao Q Y, Berggren K K 2014 Phys. Rev. B 90 214515

    [30]

    Lerer S, Bachar N, Deutscher G, Dagan Y 2014 Phys. Rev. B 90 214521

    [31]

    Yang X C, Riehemann W, Dubiel M, Hofmeister H 2002 Mater. Sci. Eng. B 95 299

    [32]

    Ederth J, Johnsson P, Niklasson G A, Hoel A, Hultker A, Heszler P, Granqvist C G, van Doorn A R, Jongerius M J, Burgard D 2003 Phys. Rev. B 68 155410

  • [1] 杨健, 高矿红, 李志青. La掺杂BaSnO3薄膜的低温电输运性质. 物理学报, 2023, 72(22): 227301. doi: 10.7498/aps.72.20231082
    [2] 蔡文博, 杨洋, 李志青. TiO薄膜的制备及电输运性质. 物理学报, 2023, 72(22): 227302. doi: 10.7498/aps.72.20231083
    [3] 刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎. 1,4-丁二硫醇分子器件电输运性质的力敏特性研究. 物理学报, 2014, 63(6): 068501. doi: 10.7498/aps.63.068501
    [4] 卢兆信. 参数修改对铁电薄膜相变性质的影响. 物理学报, 2013, 62(11): 116802. doi: 10.7498/aps.62.116802
    [5] 纳元元, 王聪, 褚立华, 丁磊, 闫君. 不同氮流量制备Mn3CuNx薄膜及其电、磁输运性质的研究. 物理学报, 2012, 61(3): 036801. doi: 10.7498/aps.61.036801
    [6] 罗炳成, 陈长乐, 谢廉. Fe3O4薄膜的电输运及光诱导特性研究. 物理学报, 2011, 60(2): 027306. doi: 10.7498/aps.60.027306
    [7] 胡伟, 李宗良, 马勇, 李英德, 王传奎. 单硫醇分子结的几何结构和电输运性质:压力效应与末端基团效应. 物理学报, 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [8] 马松山, 徐慧, 郭锐, 崔麦玲. 准一维多链无序体系跳跃电导特性. 物理学报, 2010, 59(7): 4972-4979. doi: 10.7498/aps.59.4972
    [9] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [10] 胡 妮, 熊 锐, 魏 伟, 王自昱, 汪丽莉, 余祖兴, 汤五丰, 石 兢. 自旋梯状化合物Sr14(Cu1-yFey)24O41的拉曼散射谱研究. 物理学报, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [11] 马松山, 徐 慧, 李燕峰, 张鹏华. 一维二元非对角关联无序体系交流跳跃电导特性. 物理学报, 2007, 56(9): 5394-5399. doi: 10.7498/aps.56.5394
    [12] 马松山, 徐 慧, 刘小良, 王焕友. 一维二元非对角关联无序体系跳跃电导特性. 物理学报, 2007, 56(5): 2852-2857. doi: 10.7498/aps.56.2852
    [13] 李培刚, 雷 鸣, 唐为华, 宋朋云, 陈晋平, 李玲红. 晶界对庞磁电阻颗粒薄膜的磁学和输运性能的影响. 物理学报, 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [14] 胡 妮, 谢 卉, 汪丽莉, 林 颖, 熊 锐, 余祖兴, 汤五丰, 石 兢. Fe掺杂对自旋梯状化合物Sr14(Cu1-yFey)24O41的结构和电输运性质的影响. 物理学报, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [15] 陶向明, 夏阿根, 叶高翔. 楔形金薄膜系统中的反常跳跃电导和隧道效应. 物理学报, 2004, 53(1): 239-243. doi: 10.7498/aps.53.239
    [16] 丁瑞钦, 王浩, 于英敏, 王宁娟, 佘卫龙, 李润华, 丘志仁, 罗莉, 蔡志岗, W Y Cheung, S P Wong. 射频磁控共溅射GaAs/SiO2纳米颗粒镶嵌薄膜的光学性质. 物理学报, 2002, 51(4): 882-888. doi: 10.7498/aps.51.882
    [17] 徐慧, 宋袆璞. 一维无序体系的交流跳跃导电. 物理学报, 2002, 51(8): 1798-1803. doi: 10.7498/aps.51.1798
    [18] 徐刚毅, 王天民, 何宇亮, 马智训, 郑国珍. 纳米硅薄膜的低温电输运机制. 物理学报, 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
    [19] 程兴奎, 赵文瑾, 戴国才. 高电导a-Si:H:Y合金的电输运特性. 物理学报, 1988, 37(3): 481-484. doi: 10.7498/aps.37.481
    [20] 霍裕平. 跳跃机构与低渗杂半导体杂质电导. 物理学报, 1963, 19(12): 791-806. doi: 10.7498/aps.19.791
计量
  • 文章访问数:  3688
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-18
  • 修回日期:  2015-05-27
  • 刊出日期:  2015-10-05

/

返回文章
返回