搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准一维多链无序体系跳跃电导特性

马松山 徐慧 郭锐 崔麦玲

引用本文:
Citation:

准一维多链无序体系跳跃电导特性

马松山, 徐慧, 郭锐, 崔麦玲

Theoretical study on the hopping conductivity of quasi-one-dimensional disordered systems

Ma Song-Shan, Xu Hui, Guo Rui, Cui Mai-Ling
PDF
导出引用
  • 在单电子紧束缚近似下,建立了准一维多链无序体系直流、交流电子跳跃输运模型,通过计算探讨了无序模式、维度效应、温度及外场对其直流、交流电导率的影响.计算结果表明:准一维多链无序体系的直流、交流电导率随着格点能量无序度的增大而减小,非对角无序具有增强体系电子输运能力的作用.随着链数的增加,体系的直流、交流电导率增大,但格点能量无序度较小时,维度效应的影响不明显.在对角无序情况下准一维多链无序体系的交流电导率随温度的升高而增大,而在非对角无序模式下却随温度的升高而减小,但对于直流情况,体系的直流电导率随温度的升
    Based on a tight-binding disordered model describing a single electron band, a model of quasi-one-dimensional disordered systems with several chainsis established, and the direct current (dc) and alternating current (ac) conductance formula are obtained. By calculation, the dependence of the dc and ac conductivity on the disorder mode, dimension, temperature, and electric field is studied. The results indicate that the dc and ac conductivity of the systems decreases with the increase of the degree of lattices energy disorder, while the off-diagonal disorder can enhance the electrical conductivity of the system. Meanwhile, the conductivity increases with the increase of the number of chains in the systems. The model also quantitatively explains the temperature and electric field dependence of the conductivity of the system, that is, in diagonal disordered systems, the ac conductivity of the systems increases with the increasing of temperature, in off-diagonal disordered systems, the ac conductivity of the systems decreases with the increasing of temperature, while the dc conductivity of the systems in all disordered modes increases with the increasing of temperature. In addition, the dc conductivity of the quasi-one-dimensional disordered systems increases with the increasing of the strength of dc electric field, showing the non-Ohm’s law conductivity characteristics, and the larger the number of chains in systemis, the more slowly the dc conductivity of systems increases with the increasing electric field. The ac conductivity quasi-one-dimensional disordered systems increases as the frequency of the external electric field rises, satisfying the relation σac(ω)∝ω2[In(1/ω)]2.
    • 基金项目: 高等学校博士学科点专项科研基金(批准号:20070533075)和湖南省科技计划(批准号:2009FJ3004)资助的课题.
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Rodin A S, Fogler M M 2009 Phys. Rev. B 80 155435

    [3]

    Maul R, Wenzel W 2009 Phys. Rev. B 80 045424

    [4]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [5]

    Bascones E, Estévez V, Trinidad J A, MacDonald A H 2008 Phys. Rev. B 77 245422

    [6]

    Ben-Naim E, Krapivsky P L 2009 Phys. Rev. Lett. 102 190602

    [7]

    Brower P W, Mudry C, Simons B D, Altland A 1998 Phys. Rev. Lett. 81 862

    [8]

    Sedrakyan T, Alexander O 2004 Phys. Rev. B 70 214206

    [9]

    Hjort M, Stafstrom S 2000 Phys. Rev. B 62 5245

    [10]

    Xu H 1997 Chin. J. Comp. Phys.14 574 (in Chinese) [徐 慧 1997 计算物理 14 574]

    [11]

    Song Z Q, Xu H, Li Y F, Liu X L 2005 Acta Phys. Sin.54 2198 (in Chinese) [宋招权、徐 慧、李燕峰、刘小良 2005 物 理学报 54 2198] 〖12] Liu X L, Xu H, Ma S S, Song Z Q, Deng C S 2006 Acta Phys. Sin. 55 2492(in Chinese) [刘小良、徐 慧、马松山、宋招权、邓超生 2006 物理学报 55 2492]

    [12]

    Gallos L K, Movaghar B, Siebbeles L D A 2003 Phys. Rev. B 67 165417

    [13]

    Ivanov D A, Ostrovsky P M, Skvortsov M A 2009 Phys. Rev. B 79 205108

    [14]

    Kiwi M, Ramirez R, Trias A 1978 Phys. Rev. B 17 3063

    [15]

    Carpena P, Bemaola-Galvan P, Ivanov P C, Stanley H E 2002 Nature 418 955

    [16]

    Dean P, Martin J L 1960 Proc. Roy. Soc. A 259 409

    [17]

    Dean P 1960 Proc. Roy. Soc. 254 507

    [18]

    Dean P 1972 Rev. Mod. Phys. 44 127

    [19]

    Wu S Y, Tung C, Schwartz M 1974 J. Math. Phys.15 938

    [20]

    Wu S Y, Zheng Z B 1981 Prog. Phys. 1 125 (in Chinese) [吴式玉、郑兆勃 1981 物理学进展 1 125]

    [21]

    Wu S Y, Zheng Z B 1981 Phys. Rev. B 24 4787

    [22]

    Miller A, Abraham E 1960 Phys. Rev. 120 745

    [23]

    Ambegaokar V, Halperin B I, Langer J S 1971 Phys. Rev. B 4 2612

    [24]

    Fogler M M, Kelley R S 2005 Phys. Rev. Lett. 95 166604

    [25]

    Mcinnes J A, Butcher P N, Triberis G P 1990 J. Phys. Condens. Matter 2 7861

    [26]

    Galperin Y M 1999 Doped Semiconductors:Role of Disorder (Lectures at Lund University)

    [27]

    Xu H, Zeng H T 1992 Acta Phys. Sin. 41 1666(in Chinese) [徐 慧、曾红涛 1992 物理学报 41 1666]

    [28]

    Pasveer W F, Bobbert P A, Huinink H P, Michels M A J 2005 Phys. Rev. B 72 174204

    [29]

    Lazaros K G, Bijan M, Laurens D A S 2003 Phys. Rev. B 67 165417

    [30]

    Rosenow B, Nattermann T 2006 Phys. Rev. B 73 085103

    [31]

    Ma S S, Xu H, Li Y F, Zhang P H 2007 Acta Phys. Sin. 56 5394(in Chinese) [马松山、徐 慧、李燕峰、张鹏华 2007 物理学报 56 5394]

    [32]

    Ma S S, Xu H, Wang H Y, Guo R 2009 Chin. Phys. B 18 3591

  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Rodin A S, Fogler M M 2009 Phys. Rev. B 80 155435

    [3]

    Maul R, Wenzel W 2009 Phys. Rev. B 80 045424

    [4]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [5]

    Bascones E, Estévez V, Trinidad J A, MacDonald A H 2008 Phys. Rev. B 77 245422

    [6]

    Ben-Naim E, Krapivsky P L 2009 Phys. Rev. Lett. 102 190602

    [7]

    Brower P W, Mudry C, Simons B D, Altland A 1998 Phys. Rev. Lett. 81 862

    [8]

    Sedrakyan T, Alexander O 2004 Phys. Rev. B 70 214206

    [9]

    Hjort M, Stafstrom S 2000 Phys. Rev. B 62 5245

    [10]

    Xu H 1997 Chin. J. Comp. Phys.14 574 (in Chinese) [徐 慧 1997 计算物理 14 574]

    [11]

    Song Z Q, Xu H, Li Y F, Liu X L 2005 Acta Phys. Sin.54 2198 (in Chinese) [宋招权、徐 慧、李燕峰、刘小良 2005 物 理学报 54 2198] 〖12] Liu X L, Xu H, Ma S S, Song Z Q, Deng C S 2006 Acta Phys. Sin. 55 2492(in Chinese) [刘小良、徐 慧、马松山、宋招权、邓超生 2006 物理学报 55 2492]

    [12]

    Gallos L K, Movaghar B, Siebbeles L D A 2003 Phys. Rev. B 67 165417

    [13]

    Ivanov D A, Ostrovsky P M, Skvortsov M A 2009 Phys. Rev. B 79 205108

    [14]

    Kiwi M, Ramirez R, Trias A 1978 Phys. Rev. B 17 3063

    [15]

    Carpena P, Bemaola-Galvan P, Ivanov P C, Stanley H E 2002 Nature 418 955

    [16]

    Dean P, Martin J L 1960 Proc. Roy. Soc. A 259 409

    [17]

    Dean P 1960 Proc. Roy. Soc. 254 507

    [18]

    Dean P 1972 Rev. Mod. Phys. 44 127

    [19]

    Wu S Y, Tung C, Schwartz M 1974 J. Math. Phys.15 938

    [20]

    Wu S Y, Zheng Z B 1981 Prog. Phys. 1 125 (in Chinese) [吴式玉、郑兆勃 1981 物理学进展 1 125]

    [21]

    Wu S Y, Zheng Z B 1981 Phys. Rev. B 24 4787

    [22]

    Miller A, Abraham E 1960 Phys. Rev. 120 745

    [23]

    Ambegaokar V, Halperin B I, Langer J S 1971 Phys. Rev. B 4 2612

    [24]

    Fogler M M, Kelley R S 2005 Phys. Rev. Lett. 95 166604

    [25]

    Mcinnes J A, Butcher P N, Triberis G P 1990 J. Phys. Condens. Matter 2 7861

    [26]

    Galperin Y M 1999 Doped Semiconductors:Role of Disorder (Lectures at Lund University)

    [27]

    Xu H, Zeng H T 1992 Acta Phys. Sin. 41 1666(in Chinese) [徐 慧、曾红涛 1992 物理学报 41 1666]

    [28]

    Pasveer W F, Bobbert P A, Huinink H P, Michels M A J 2005 Phys. Rev. B 72 174204

    [29]

    Lazaros K G, Bijan M, Laurens D A S 2003 Phys. Rev. B 67 165417

    [30]

    Rosenow B, Nattermann T 2006 Phys. Rev. B 73 085103

    [31]

    Ma S S, Xu H, Li Y F, Zhang P H 2007 Acta Phys. Sin. 56 5394(in Chinese) [马松山、徐 慧、李燕峰、张鹏华 2007 物理学报 56 5394]

    [32]

    Ma S S, Xu H, Wang H Y, Guo R 2009 Chin. Phys. B 18 3591

  • [1] 周定邦, 刘新典, 李志青. 多晶TaN1-薄膜的电输运性质研究. 物理学报, 2015, 64(19): 197302. doi: 10.7498/aps.64.197302
    [2] 段玲, 胡飞, 丁建文. 准一维纳米线电子输运的梯度无序效应. 物理学报, 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [3] 赵义. 一维长程关联无序系统的局域性. 物理学报, 2010, 59(1): 532-535. doi: 10.7498/aps.59.532
    [4] 徐 慧, 邓超生, 刘小良, 马松山, 伍晓赞. 一维长程关联无序系统中的电子态. 物理学报, 2007, 56(3): 1643-1648. doi: 10.7498/aps.56.1643
    [5] 马松山, 徐 慧, 李燕峰, 张鹏华. 一维二元非对角关联无序体系交流跳跃电导特性. 物理学报, 2007, 56(9): 5394-5399. doi: 10.7498/aps.56.5394
    [6] 马松山, 徐 慧, 刘小良, 王焕友. 一维二元非对角关联无序体系跳跃电导特性. 物理学报, 2007, 56(5): 2852-2857. doi: 10.7498/aps.56.2852
    [7] 刘小良, 徐 慧, 马松山, 宋招权, 邓超生. 准二维无序系统的电子结构. 物理学报, 2006, 55(5): 2492-2497. doi: 10.7498/aps.55.2492
    [8] 宋招权, 徐 慧, 李燕峰, 刘小良. 非对角无序和维数效应对低维无序系统电子结构的影响. 物理学报, 2005, 54(5): 2198-2201. doi: 10.7498/aps.54.2198
    [9] 陶向明, 夏阿根, 叶高翔. 楔形金薄膜系统中的反常跳跃电导和隧道效应. 物理学报, 2004, 53(1): 239-243. doi: 10.7498/aps.53.239
    [10] 徐慧, 宋祎璞, 李新梅. 一维无序体系电子跳跃导电研究. 物理学报, 2002, 51(1): 143-147. doi: 10.7498/aps.51.143
    [11] 徐慧, 宋袆璞. 一维无序体系的交流跳跃导电. 物理学报, 2002, 51(8): 1798-1803. doi: 10.7498/aps.51.1798
    [12] 左都罗, 李道火. 金刚石晶格上的对角无序与非对角无序非晶量子点. 物理学报, 1994, 43(6): 991-999. doi: 10.7498/aps.43.991
    [13] 蒋祺, 龚昌德. 等能谷间杂质散射对无序层状系统电导率的影响. 物理学报, 1989, 38(4): 600-606. doi: 10.7498/aps.38.600
    [14] 蒋祺, 龚昌德. 无序层状系统电导率的自洽研究. 物理学报, 1989, 38(4): 593-599. doi: 10.7498/aps.38.593
    [15] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化. 物理学报, 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
    [16] 蒋祺, 龚昌德. 无序层状系统的电导率. 物理学报, 1988, 37(6): 941-949. doi: 10.7498/aps.37.941
    [17] 厉彦民, 章立源. 对角无序对局域电子配对系统的上临界磁场的影响. 物理学报, 1988, 37(6): 1030-1035. doi: 10.7498/aps.37.1030
    [18] 熊诗杰, 谭明秋. 无序一维无公度调制链的电子结构. 物理学报, 1987, 36(9): 1230-1234. doi: 10.7498/aps.36.1230
    [19] 厉彦民, 章立源. 对角无序对三重态双极化子系统的超导电性的影响. 物理学报, 1987, 36(6): 796-800. doi: 10.7498/aps.36.796
    [20] 郭常霖. SiC晶体一维无序现象引起的异常衍射. 物理学报, 1965, 21(6): 1308-1312. doi: 10.7498/aps.21.1308
计量
  • 文章访问数:  5418
  • PDF下载量:  881
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-19
  • 修回日期:  2009-11-17
  • 刊出日期:  2010-07-15

准一维多链无序体系跳跃电导特性

  • 1. 中南大学物理科学与技术学院,长沙 410083
    基金项目: 高等学校博士学科点专项科研基金(批准号:20070533075)和湖南省科技计划(批准号:2009FJ3004)资助的课题.

摘要: 在单电子紧束缚近似下,建立了准一维多链无序体系直流、交流电子跳跃输运模型,通过计算探讨了无序模式、维度效应、温度及外场对其直流、交流电导率的影响.计算结果表明:准一维多链无序体系的直流、交流电导率随着格点能量无序度的增大而减小,非对角无序具有增强体系电子输运能力的作用.随着链数的增加,体系的直流、交流电导率增大,但格点能量无序度较小时,维度效应的影响不明显.在对角无序情况下准一维多链无序体系的交流电导率随温度的升高而增大,而在非对角无序模式下却随温度的升高而减小,但对于直流情况,体系的直流电导率随温度的升

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回