搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准一维纳米线电子输运的梯度无序效应

段玲 胡飞 丁建文

引用本文:
Citation:

准一维纳米线电子输运的梯度无序效应

段玲, 胡飞, 丁建文

Effects of gradient disorder on electronic transport in quasi-one-dimensional nanowires

Duan Ling, Hu Fei, Ding Jian-Wen
PDF
导出引用
  • 考虑实际体系的梯度无序和结散射,发展格林函数矩阵分解消元方法,研究了准一维纳米线的电子输运性质. 结果表明,由于结散射,电导随能量呈现振荡行为,无序的引入破坏了电子相干性,在低无序度区平均电导呈现异常增加,呈现一个新的电导峰. 当表面存在无序但无梯度衰减时,体系的平均电导随无序度增强先减后增,出现类局域退局域性转变. 当表面无序线性衰减时,平均电导在强无序区稍有增加,而当表面无序高斯型衰减时,平均电导指数衰减,类局域退局域性转变消失,不同于以前的理论预言. 研究结果对准一维纳米线电子器件的结构设计和应用有指导作用.
    Considering both the gradient decay of the real disorder and the contact scattering, we investigate the electronic transport in quasi-one-dimensional nanowires by developing a decomposition elimination method for Green's function matrix. In the presence the contact scattering, the conductance oscillates with energy. For some energies of incident electrons, an abnormal enhancement is obtained in the average conductance due to the destroyed coherence by the introduction of much low disorder, showing that there appears a new conductance peak. In the absence of disorder gradient, the average conductance firstly decreases then increases with disorder strength, indicating that there exists a localization-delocalization transition. In the presence of linearly decaying disorder, the average conductance increases slightly in a strong disorder region. In the case of the Gaussian-type decaying disorder, the average conductance decreases exponentially and the localization-delocalization transition disappears, which is different from previous thereotical result. The results are helpful for the design and the application of quasi-one-dimensional nanowires device.
    • 基金项目: 国家自然科学基金(批准号:10674113,11074212)和全国优秀博士学位论文作者专项基金(批准号:200726)资助的课题.
    [1]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [2]
    [3]

    Van der Marel D, Haanappel E G 1989 Phys. Rev. B 39 7811

    [4]
    [5]

    Lvy L P, Dolan G, Dunsmuir J, Bouchiat H 1990 Phys. Rev. Lett. 64 2074

    [6]

    Pichler T, Knupfer M, Golden M S, Fink J, Rinzler A, Smalley R E 1998 Phys. Rev. Lett. 80 4729

    [7]
    [8]

    Zwanenburg F, van Rijmenam C, Fang Y, Lieber C, Kouwenhoven L 2009 Nano Lett. 9 1071

    [9]
    [10]
    [11]

    Gustavsson S, Leturcq R, Simovič B, Schleser R, Ihn T, Studerus P, Ensslin K, Driscoll D C, Gossard A C 2006 Phys. Rev. Lett. 96 076605

    [12]
    [13]

    Takagahara T, Takeda K 1992 Phys. Rev. B 46 15578

    [14]

    Songmuang R, Katsaros G, Monroy E, Spathis P, Bougerol C, Mongillo M, De Franceschi S 2010 Nano Lett. 10 3345

    [15]
    [16]
    [17]

    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H 2003 Adv. Mater. 15 353

    [18]
    [19]

    Cui Y,Wang Q Q, Park H K, Lieber C 2001 Science 293 1289

    [20]
    [21]

    Gudiksen M, Lauhon L, Wang J, Smith D, Lieber C 2002 Nature 415 617

    [22]

    Ramayya E B, Vasileska D, Goodnick S M, Knezevic I 2007 IEEE Trans. Nanotech. 6 113

    [23]
    [24]

    Hochbaum A I, Chen R 2008 Nature 451 163

    [25]
    [26]
    [27]

    Duan X, Huang Y, Cui Y, Wang J, Lieber C 2001 Nature 409 66

    [28]

    Anderson P W 1958 Phys. Rev. 109 1492

    [29]
    [30]
    [31]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    [32]
    [33]

    Kander I, Imry Y, Sivan U 1990 Phys. Rev. B 41 12941

    [34]
    [35]

    Mucciolo E, Castro Neto A, Lewenkopf C 2009 Phys. Rev. B 79 075407

    [36]
    [37]

    Markussen T, Rurali R, Brandbyge M, Jauho A P 2006 Phys. Rev. B 74 245313

    [38]
    [39]

    Akguc G B, Gong J 2008 Phys. Rev. B 78 115317

    [40]

    Feist J, Bcker A, Ketzmerick R, Burgdrfer J, Rotter S 2009 Phys. Rev. B 80 245322

    [41]
    [42]

    Yang C Y, Ding J W, Xu N 2007 Physica. B 394 69

    [43]
    [44]

    Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204

    [45]
    [46]
    [47]

    Zhong J X, Stocks G M 2006 Nano Lett. 6 128

    [48]

    Chen H B, Ding J W 2008 Physica. B 403 2015

    [49]
    [50]

    Cuevas E, Louis E, Vergs J 1996 Phys. Rev. Lett. 77 1970

    [51]
    [52]
    [53]

    Ma M M, Ding J W, Chen H B, Xu N 2009 Acta Pyhs. Sin. 58 2726 (in Chinese)[马明明、丁建文、陈宏波、徐 宁 2009 物理学报 58 2726]

    [54]

    Xu N, Ding J W, Xing D Y 2008 J. Appl. Phys. 103 083710

    [55]
    [56]
    [57]

    Jiang J, Dong J, Xing D Y 2003 Phys. Rev. Lett. 91 056802

  • [1]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [2]
    [3]

    Van der Marel D, Haanappel E G 1989 Phys. Rev. B 39 7811

    [4]
    [5]

    Lvy L P, Dolan G, Dunsmuir J, Bouchiat H 1990 Phys. Rev. Lett. 64 2074

    [6]

    Pichler T, Knupfer M, Golden M S, Fink J, Rinzler A, Smalley R E 1998 Phys. Rev. Lett. 80 4729

    [7]
    [8]

    Zwanenburg F, van Rijmenam C, Fang Y, Lieber C, Kouwenhoven L 2009 Nano Lett. 9 1071

    [9]
    [10]
    [11]

    Gustavsson S, Leturcq R, Simovič B, Schleser R, Ihn T, Studerus P, Ensslin K, Driscoll D C, Gossard A C 2006 Phys. Rev. Lett. 96 076605

    [12]
    [13]

    Takagahara T, Takeda K 1992 Phys. Rev. B 46 15578

    [14]

    Songmuang R, Katsaros G, Monroy E, Spathis P, Bougerol C, Mongillo M, De Franceschi S 2010 Nano Lett. 10 3345

    [15]
    [16]
    [17]

    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H 2003 Adv. Mater. 15 353

    [18]
    [19]

    Cui Y,Wang Q Q, Park H K, Lieber C 2001 Science 293 1289

    [20]
    [21]

    Gudiksen M, Lauhon L, Wang J, Smith D, Lieber C 2002 Nature 415 617

    [22]

    Ramayya E B, Vasileska D, Goodnick S M, Knezevic I 2007 IEEE Trans. Nanotech. 6 113

    [23]
    [24]

    Hochbaum A I, Chen R 2008 Nature 451 163

    [25]
    [26]
    [27]

    Duan X, Huang Y, Cui Y, Wang J, Lieber C 2001 Nature 409 66

    [28]

    Anderson P W 1958 Phys. Rev. 109 1492

    [29]
    [30]
    [31]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    [32]
    [33]

    Kander I, Imry Y, Sivan U 1990 Phys. Rev. B 41 12941

    [34]
    [35]

    Mucciolo E, Castro Neto A, Lewenkopf C 2009 Phys. Rev. B 79 075407

    [36]
    [37]

    Markussen T, Rurali R, Brandbyge M, Jauho A P 2006 Phys. Rev. B 74 245313

    [38]
    [39]

    Akguc G B, Gong J 2008 Phys. Rev. B 78 115317

    [40]

    Feist J, Bcker A, Ketzmerick R, Burgdrfer J, Rotter S 2009 Phys. Rev. B 80 245322

    [41]
    [42]

    Yang C Y, Ding J W, Xu N 2007 Physica. B 394 69

    [43]
    [44]

    Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204

    [45]
    [46]
    [47]

    Zhong J X, Stocks G M 2006 Nano Lett. 6 128

    [48]

    Chen H B, Ding J W 2008 Physica. B 403 2015

    [49]
    [50]

    Cuevas E, Louis E, Vergs J 1996 Phys. Rev. Lett. 77 1970

    [51]
    [52]
    [53]

    Ma M M, Ding J W, Chen H B, Xu N 2009 Acta Pyhs. Sin. 58 2726 (in Chinese)[马明明、丁建文、陈宏波、徐 宁 2009 物理学报 58 2726]

    [54]

    Xu N, Ding J W, Xing D Y 2008 J. Appl. Phys. 103 083710

    [55]
    [56]
    [57]

    Jiang J, Dong J, Xing D Y 2003 Phys. Rev. Lett. 91 056802

  • [1] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制. 物理学报, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [2] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [4] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算. 物理学报, 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [5] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算. 物理学报, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [6] 柳福提, 程艳, 陈向荣, 程晓洪. GaAs纳米结点电子输运性质的第一性原理计算. 物理学报, 2014, 63(13): 137303. doi: 10.7498/aps.63.137303
    [7] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响. 物理学报, 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [8] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算. 物理学报, 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [9] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算. 物理学报, 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [10] 邓小清, 杨昌虎, 张华林. B/N掺杂对于石墨烯纳米片电子输运的影响. 物理学报, 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [11] 胡飞, 段玲, 丁建文. 锯齿型石墨纳米带叠层复合结的电子输运. 物理学报, 2012, 61(7): 077201. doi: 10.7498/aps.61.077201
    [12] 许双英, 胡林华, 李文欣, 戴松元. 染料敏化太阳电池中TiO2颗粒界面接触对电子输运影响的研究. 物理学报, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [13] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究. 物理学报, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [14] 张迷, 陈元平, 张再兰, 欧阳滔, 钟建新. 堆叠石墨片对锯齿型石墨纳米带电子输运的影响. 物理学报, 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [15] 安义鹏, 杨传路, 王美山, 马晓光, 王德华. C20F20分子电子输运性质的第一性原理研究. 物理学报, 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [16] 王利光, 张鸿宇, 王畅, Terence K. S. W.. 嵌入锂原子的zigzag型单壁碳纳米管的电子传导特性. 物理学报, 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [17] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究. 物理学报, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [18] 马明明, 陈宏波, 丁建文, 徐宁. 二维介观环中持续电流的梯度无序效应. 物理学报, 2009, 58(4): 2726-2730. doi: 10.7498/aps.58.2726
    [19] 牛秀明, 齐元华. 分子结点电子输运性质的理论研究. 物理学报, 2008, 57(11): 6926-6931. doi: 10.7498/aps.57.6926
    [20] 郑坚, 刘万东, 俞昌旋. 离子声波对电子输运的影响. 物理学报, 2001, 50(4): 721-725. doi: 10.7498/aps.50.721
计量
  • 文章访问数:  7767
  • PDF下载量:  566
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-19
  • 修回日期:  2011-03-16
  • 刊出日期:  2011-11-15

/

返回文章
返回