-
为改善碳纳米管场效应晶体管的性能,将一种峰值掺杂-低掺杂漏(HALO-LDD)掺杂结构引入碳纳米管沟道.在量子力学非平衡Green函数理论框架内,通过自洽求解Poisson方程和Schrödinger方程,构建了适用于非均匀掺杂的碳纳米管场效应管的输运模型,该模型可实现场效应晶体管的输运性质与碳纳米管手性指数的对接. 利用该模型研究了单HALO双LDD 掺杂结构对碳纳米管场效应晶体管输运特性的影响.对比分析表明,这种非均匀掺杂结构的场效应管同本征碳纳米管沟道场效应晶体管相比,具有更低的泄漏电流、更大的电流开关比、更小的亚阈区栅电压摆幅,表明其具有更好的栅控能力; 具有更小的漏源电导,更适合应用于模拟集成电路中;具有更小的阈值电压漂移,表明更能抑制短沟道效应. 同本征沟道碳纳米管场效应晶体管相比,这种非均匀掺杂碳纳米管场效应晶体管在沟道区靠近源端位置,电场强度增大, 有利于增大电子的传输速率;在沟道区靠近漏端位置,电场强度减小,更有利于抑制热电子效应.
-
关键词:
- 非平衡Green函数 /
- 碳纳米管场效应晶体管 /
- 短沟道效应 /
- 热电子
A transport model of CNTFET is built by solving the Poisson equation and Schrödinger equation within the non-equilibrium Green's function theory. The simulation method can relate the CNTFET transport properties directly with the chiral index of CNT. For the first time, the influences of single HALO and double LDD (HLL) doping structures on the CNTFET are investigated. The results show that under the same gate-source and drain-source voltages, HLL-CNTFET reduces significantly the leakage current and the subthreshold swing and increases on-off current ratio as compared with conventional CNTFET, indicating that this new structure has better gate control ability than conventional CNTFET. HLL-CNTFET possesses a smaller drain-source conductance so that it is more suitable for analog integrated circuits application, and has a smaller threshold voltage shift so shat it can better suppress DIBL effect. The increase of channel electric field strength near the source is beneficial to the increase of the electron transport rate; and the reduction in electric field near the drain is more conductive to the suppression of hot electron effects. This study is helpful for understanding the working mechanism and exploring new features of CNTFET.-
Keywords:
- non-equilibrium Green's function /
- carbon nanotube field effect transistor /
- short-channel effects /
- hot electron
[1] Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49
[2] Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447
[3] Yang W C, Yang T Y, Yew T R 2007 Carbon 45 1679
[4] Chen C X, Zhang Y F 2005 Sci. China Ser E 35 1156 (in Chinese) [陈长鑫, 张亚非 2005 中国科学E 35 1156]
[5] Zhang Z Y, Wang S, Liang X L, Chen Q 2006 Chin. J. Vac. Sci. Technol. 26 353 (in Chinese) [张振宇, 王胜, 梁学磊, 陈清 2006 真空科学与技术学报 26 353]
[6] Wang X F, Huang R, Fu Y Y, Zhang X 2004 J. Func. Mater. Dev. 10 273 (in Chinese) [王晓峰, 黄如, 傅云义, 张兴 2004 功能材料与器件学报 10 273]
[7] Zhou H L, Chi Y Q, Zhang M X, Fang L 2010 Acta Phys. Sin. 59 8104 (in Chinese) [周海亮, 池雅庆, 张民选, 方粮 2010 物理学报 59 8104]
[8] Zhou H L, Zhang M X, Fang L 2010 Acta Phys. Sin. 59 5010 (in Chinese) [周海亮, 张民选, 方粮 2010 物理学报 59 5010]
[9] Liang W, Bozovic D, Hafner J H, Tinkham M, Park H 2001 Nature 411 665
[10] Durkop T, Getty S A, Cobas E, Fuhrer M S 2004 Nano Lett. 4 35
[11] Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654
[12] Yao Z, Kane C L, Dekker C 2000 Phys. Rev. Lett. 84 2491
[13] Chen P Y, Shao Y L, Cheng K W 2007 Comput. Phys. Commun. 177 683
[14] Pourfath M, Kosina H, Selberherr S 2008 Math. Comput. Simul. 79 1051
[15] Pourfath M, Kosina H, Selberherr S 2007 Solid State Electron 51 1565
[16] Zou J P, Zhang Q, Marzari N 2008 Phys. Lett. A 372 6940
[17] Zahra A, Ali A O 2009 Microelectron. J. 40 5
[18] Ali A O, Zahra A 2009 Physica E 41 552
[19] Chen C X, Zhang W, Zhao B, Zhang Y F 2009 Phys. Lett. A 374 309
[20] Guo J, Datta S, Anantram M P, Lundstrom M 2004 J. Comput. Electron. 3 373
[21] Liu H, Yin H J, Xia S N 2009 Acta Phys. Sin. 58 8489 [刘红, 印海建, 夏树宁 2009 物理学报 58 8489]
[22] Zahra A, Ali A O 2008 Physica E 41 196
[23] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[24] Ouyang M, Huang J L, Cheung C L, Lieber C M 2001 Science 292 702
-
[1] Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49
[2] Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447
[3] Yang W C, Yang T Y, Yew T R 2007 Carbon 45 1679
[4] Chen C X, Zhang Y F 2005 Sci. China Ser E 35 1156 (in Chinese) [陈长鑫, 张亚非 2005 中国科学E 35 1156]
[5] Zhang Z Y, Wang S, Liang X L, Chen Q 2006 Chin. J. Vac. Sci. Technol. 26 353 (in Chinese) [张振宇, 王胜, 梁学磊, 陈清 2006 真空科学与技术学报 26 353]
[6] Wang X F, Huang R, Fu Y Y, Zhang X 2004 J. Func. Mater. Dev. 10 273 (in Chinese) [王晓峰, 黄如, 傅云义, 张兴 2004 功能材料与器件学报 10 273]
[7] Zhou H L, Chi Y Q, Zhang M X, Fang L 2010 Acta Phys. Sin. 59 8104 (in Chinese) [周海亮, 池雅庆, 张民选, 方粮 2010 物理学报 59 8104]
[8] Zhou H L, Zhang M X, Fang L 2010 Acta Phys. Sin. 59 5010 (in Chinese) [周海亮, 张民选, 方粮 2010 物理学报 59 5010]
[9] Liang W, Bozovic D, Hafner J H, Tinkham M, Park H 2001 Nature 411 665
[10] Durkop T, Getty S A, Cobas E, Fuhrer M S 2004 Nano Lett. 4 35
[11] Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654
[12] Yao Z, Kane C L, Dekker C 2000 Phys. Rev. Lett. 84 2491
[13] Chen P Y, Shao Y L, Cheng K W 2007 Comput. Phys. Commun. 177 683
[14] Pourfath M, Kosina H, Selberherr S 2008 Math. Comput. Simul. 79 1051
[15] Pourfath M, Kosina H, Selberherr S 2007 Solid State Electron 51 1565
[16] Zou J P, Zhang Q, Marzari N 2008 Phys. Lett. A 372 6940
[17] Zahra A, Ali A O 2009 Microelectron. J. 40 5
[18] Ali A O, Zahra A 2009 Physica E 41 552
[19] Chen C X, Zhang W, Zhao B, Zhang Y F 2009 Phys. Lett. A 374 309
[20] Guo J, Datta S, Anantram M P, Lundstrom M 2004 J. Comput. Electron. 3 373
[21] Liu H, Yin H J, Xia S N 2009 Acta Phys. Sin. 58 8489 [刘红, 印海建, 夏树宁 2009 物理学报 58 8489]
[22] Zahra A, Ali A O 2008 Physica E 41 196
[23] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[24] Ouyang M, Huang J L, Cheung C L, Lieber C M 2001 Science 292 702
计量
- 文章访问数: 7924
- PDF下载量: 999
- 被引次数: 0