搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强

曾周晓松 王笑 潘安练

引用本文:
Citation:

二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强

曾周晓松, 王笑, 潘安练

Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement

Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian
PDF
HTML
导出引用
  • 二维过渡金属硫化物(transition metal dichalcogenides, TMDCs)由于可实现从间接带隙到直接带隙半导体的转变, 能带宽度涵盖可见光到红外波段, 及二维限域所带来的优异光电特性, 在集成光子以及光电器件领域受到了广泛的关注. 最近随着二维材料基础非线性光学研究的深入, 二维TMDCs也展现出了在非线性光学器件应用上的巨大潜能. 本综述聚焦于二维层状TMDCs中关于二次谐波的研究工作. 首先简述一些基本的非线性光学定则, 然后讨论二维TMDCs中原子层数、偏振、激子共振、能谷等相关的二次谐波特性. 之后将回顾这些材料二次谐波信号的调制及增强工作, 讨论外加电场、应变、表面等离激元结构、纳米微腔等方法和手段的影响机理. 最后进行总结和对未来本领域工作的展望. 理解二维TMDCs二次谐波的产生机制及材料自身结构与外场调控机理, 将对未来超薄的二维非线性光学器件的发展产生深远的意义.
    Two-dimensionl (2D) layered transition metal dichalcogenides (TMDCs) have received great attention in integrated on-chip photonic and photoelectric applications due to their unique physical properties including indirect-to-direct optical bandgap transition, broad bandgap from visible band to near-infrared band, as well as their excellent optoelectric properties derived from the 2D confinement. Recently, with the in-depth study of their fundament nonlinear optical properties, these 2D layered TMDCs have displayed significant potential applications in nonlinear optical devices. In this review, we focus on recent research progress of second harmonic generation (SHG) studies of TMDCs. Firstly, we briefly introduce the basic theory of nonlinear optics (mainly about SHG). Secondly, the several intrinsic SHG relative properties in TMDCs including layer dependence, polarization dependence, exciton resonance effect, valley selection rule are discussed. Thirdly, the latest SHG modulation and enhancement studies are presented, where the electric field, strain, plasmonic structure and micro-cavity enhancement are covered. Finally, we will summarize and give a perspective of possible research direction in the future. We believe that a more in-depth understanding of the SHG process in 2D layered TMDCs as well as the material structure and modulation effects paves the way for further developing the ultra-thin, multifunctional 2D nonlinear optical devices.
      通信作者: 王笑, xiao_wang@hnu.edu.cn ; 潘安练, anlian.pan@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51525202, U19A2090, 91850116, 51772084)和湖南省自然科学基金(批准号: 2018RS3051)资助的课题
      Corresponding author: Wang Xiao, xiao_wang@hnu.edu.cn ; Pan An-Lian, anlian.pan@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51525202, U19A2090, 91850116, 51772084) and the Hunan Provincial Natural Science Foundation of China (Grant No. 2018RS3051)
    [1]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [2]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [5]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [6]

    Wang J, Han J, Chen X, Wang X 2019 InfoMat 1 33Google Scholar

    [7]

    Wang X, Cui Y, Li T, Lei M, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1801274Google Scholar

    [8]

    Schornbaum J, Winter B, Schiessl S P, Gannott F, Katsukis G, Guldi D M, Spiecker E, Zaumseil J 2014 Adv. Funct. Mater. 24 5798Google Scholar

    [9]

    Lai J W, Liu X, Ma J C, Wang Q S, Zhang K A, Ren X, Liu Y A, Gu Q Q, Zhuo X, Lu W, Wu Y, Li Y, Feng J, Zhou S Y, Chen J H, Sun D 2018 Adv. Mater. 30 1707152Google Scholar

    [10]

    Wu D, Ma Y C, Niu Y Y, Liu Q M, Dong T, Zhang S J, Niu J S, Zhou H B, Wei J, Wang Y X, Zhao Z R, Wang N L 2018 Sci. Adv. 4 eaao3057Google Scholar

    [11]

    Komsa H P, Krasheninnikov A V 2012 Phys. Rev. B 86 241201Google Scholar

    [12]

    Li L, Han W, Pi L, Niu P, Han J, Wang C, Su B, Li H, Xiong J, Bando Y, Zhai T 2019 InfoMat 1 54Google Scholar

    [13]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [14]

    Li Y L, Rao Y, Mak K F, You Y M, Wang S Y, Dean C R, Heinz T F 2013 Nano Lett. 13 3329Google Scholar

    [15]

    Jones A M, Yu H Y, Ghimire N J, Wu S F, Aivazian G, Ross J S, Zhao B, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Nanotechnol. 8 634Google Scholar

    [16]

    Malard L M, Alencar T V, Barboza A P M, Mak K F, de Paula A M 2013 Phys. Rev. B 87 201401Google Scholar

    [17]

    Martinez A, Sun Z P 2013 Nat. Photonics 7 842Google Scholar

    [18]

    令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207Google Scholar

    Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207Google Scholar

    [19]

    王小发, 张俊红, 高子叶, 夏光琼, 吴正茂 2017 物理学报 66 114209Google Scholar

    Wang X F, Zhang J H, Gao Z Y, Xia G Q, Wu Z M 2017 Acta Phys. Sin. 66 114209Google Scholar

    [20]

    Mu H R, Wang Z T, Yuan J, Xiao S, Chen C Y, Chen Y, Chen Y, Song J C, Wang Y S, Xue Y Z, Zhang H, Bao Q L 2015 Acs Photonics 2 832Google Scholar

    [21]

    Pantazis P, Maloney J, Wu D, Fraser S E 2010 Proc. Natl. Acad. Sci. U. S. A. 107 14535Google Scholar

    [22]

    Ren M L, Agarwal R, Liu W J, Agarwal R 2015 Nano Lett. 15 7341Google Scholar

    [23]

    Nikogosyan D N 1991 Appl. Phys. A, Solids Surf. A52 359Google Scholar

    [24]

    Ishigame Y, Suhara T, Nishihara H 1991 Optics letters 16 375Google Scholar

    [25]

    Wen X, Gong Z, Li D 2019 Info.Mat. 1 317Google Scholar

    [26]

    Liang J, Zhang J, Li Z Z, Hong H, Wang J H, Zhang Z H, Zhou X, Qiao R X, Xu J Y, Gao P, Liu Z R, Liu Z F, Sun Z P, Meng S, Liu K H, Yu D P 2017 Nano Lett. 17 7539Google Scholar

    [27]

    Kumar N, Najmaei S, Cui Q N, Ceballos F, Ajayan P M, Lou J, Zhao H 2013 Phys. Rev. B 87 161403Google Scholar

    [28]

    Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L, Xu S J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar

    [29]

    Janisch C, Wang Y X, Ma D, Mehta N, Elias A L, Perea-Lopez N, Terrones M, Crespi V, Liu Z W 2014 Sci. Rep. 4 5530Google Scholar

    [30]

    Wagoner G A, Persans P D, Van Wagenen E A, Korenowski G M 1998 J. Opt. Soc. Am. B, Opt. Phys. 15 1017Google Scholar

    [31]

    Jiang T, Liu H R, Huang D, Zhang S, Li Y G, Gong X G, Shen Y R, Liu W T, Wu S W 2014 Nat. Nanotechnol. 9 825Google Scholar

    [32]

    Zhao M, Ye Z L, Suzuki R, Ye Y, Zhu H Y, Xiao J, Wang Y, Iwasa Y, Zhang X 2016 Light-Sci. Appl. 5 e16131Google Scholar

    [33]

    Zeng Z X S, Sun X X, Zhang D L, Zheng W H, Fan X P, He M, Xu T, Sun L T, Wang X, Pan A L 2019 Adv. Funct. Mater. 29 1806874Google Scholar

    [34]

    Yang D, Hu X Z, Zhuang M H, Ding Y, Zhou S S, Li A J, Yu Y W, Li H Q, Luo Z T, Gan L, Zhai T Y 2018 Adv. Funct. Mater. 28 1800785Google Scholar

    [35]

    Song Y, Tian R J, Yang J L, Yin R, Zhao J L, Gan X T 2018 Adv. Opt. Mater. 6 1701334Google Scholar

    [36]

    Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J, Zhang X 2017 Nature 550 487Google Scholar

    [37]

    Hao Q Y, Yi H, Su H M, Wei B, Wang Z, Lao Z Z, Chai Y, Wang Z C, Jin C H, Dai J F, Zhang W J 2019 Nano Lett. 19 2634Google Scholar

    [38]

    Li F, Feng Y X, Li Z W, Ma C, Qu J Y, Wu X P, Li D, Zhang X H, Yang T F, He Y Q, Li H L, Hu X L, Fan P, Chen Y, Zheng B Y, Zhu X L, Wang X, Duan X F, Pan A L 2019 Adv. Mater. 31 1901351Google Scholar

    [39]

    Fan X P, Jiang Y, Zhuang X J, Liu H J, Xu T, Zheng W H, Fan P, Li H L, Wu X P, Zhu X L, Zhang Q L, Zhou H, Hu W, Wang X, Sun L T, Duan X F, Pan A L 2017 ACS Nano 11 4892Google Scholar

    [40]

    Fan X P, Zhao Y Z, Zheng W H, Li H L, Wu X P, Hu X L, Zhang X H, Zhu X L, Zhang Q L, Wang X, Yang B, Chen J H, Jin S, Pan A 2018 Nano Lett. 18 3885Google Scholar

    [41]

    Lin X Q, Liu Y Y, Wang K, Wei C, Zhang W, Yan Y L, Li Y J, Yao J N, Zhao Y S 2018 ACS Nano 12 689Google Scholar

    [42]

    Isakov D V, Gomes E D, Vieira L G, Dekola T, Belsley M S, Almeida B G 2011 ACS Nano 5 73Google Scholar

    [43]

    Hu H B, Wang K, Long H, Liu W W, Wang B, Lu P X 2015 Nano Lett. 15 3351Google Scholar

    [44]

    Zhang X Q, Lin C H, Tseng Y W, Huang K H, Lee Y H 2015 Nano Lett. 15 410Google Scholar

    [45]

    Wu X P, WanG X, Li H L, Zeng Z X S, Zheng B Y, Zhang D L, Li F, Zhu X L, Jiang Y, Pan A L 2019 Nano Res. 12 3123Google Scholar

    [46]

    Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H, Chang P S, Chou Y C, Chang W H 2014 ACS Nano 8 2951Google Scholar

    [47]

    Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K, Hone J C, Zhang X 2014 Science 344 488Google Scholar

    [48]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [49]

    Shi H Y, Yan R S, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L B 2013 ACS Nano 7 1072Google Scholar

    [50]

    Wang G, Marie X, Gerber I, Amand T, Lagarde D, Bouet L, Vidal M, Balocchi A, Urbaszek B 2015 Phys. Rev. Lett. 114 097403Google Scholar

    [51]

    Fan X, Ji Z, Fei R, Zheng W, Liu W, Zhu X, Chen S, Yang L, Liu H, Pan A 2020 Nano Lett. 20 2667Google Scholar

    [52]

    Le C T, Clark D J, Ullah F, Jang J I, Senthilkumar V, Sim Y, Seong M J, Chung K H, Kim J W, Park S, Rhim S H, Kim G, Kim Y S 2017 Acs Photonics 4 38Google Scholar

    [53]

    Yoshida S, Kobayashi Y, Sakurada R, Mori S, Miyata Y, Mogi H, Koyama T, Takeuchi O, Shigekawa H 2015 Sci. Rep. 5 14808Google Scholar

    [54]

    Lin K I, Ho Y H, Liu S B, Ciou J J, Huang B T, Chen C, Chang H C, Tu C L, Chen C H 2018 Nano Lett. 18 793Google Scholar

    [55]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [56]

    Mak K F, He K L, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494Google Scholar

    [57]

    Zeng H L, Dai J F, Yao W, Xiao D, Cui X D 2012 Nat. Nanotechnol. 7 490Google Scholar

    [58]

    Sun Z, Gu J, Ghazaryan A, Shotan Z, Considine C R, Dollar M, Chakraborty B, Liu X Z, Ghaemi P, Kena-Cohen S, Menon V M 2017 Nat. Photonics 11 491Google Scholar

    [59]

    Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S F, Yan J Q, Mandrus D G, Yao W, Xu X D 2015 Nat. Nanotechnol. 10 407Google Scholar

    [60]

    Xiao J, Ye Z L, Wang Y, Zhu H Y, Wang Y, Zhang X 2015 Light-Sci. Appl. 4 e366Google Scholar

    [61]

    Manaka T, Lim E, Tamura R, Iwamoto M 2007 Nat. Photonics 1 581Google Scholar

    [62]

    Lee C, Chang R, Bloembergen N 1967 Phys. Rev. Lett. 18 167Google Scholar

    [63]

    Chen S M, Li K F, Li G X, Cheah K W, Zhang S 2019 Light-Sci. Appl. 8 17Google Scholar

    [64]

    Terhune R, Maker P, Savage C 1962 Phys. Rev. Lett. 8 404Google Scholar

    [65]

    Ren M L, Berger J S, Liu W J, Liu G R, Agarwal R 2018 Nat. Commun. 9 186Google Scholar

    [66]

    Yu H K, Talukdar D, Xu W G, Khurgin J B, Xiong Q H 2015 Nano Lett. 15 5653Google Scholar

    [67]

    Klein J, Wierzbowski J, Steinhoff A, Florian M, Rosner M, Heimbach F, Muller K, Jahnke F, Wehling T O, Finley J J, Kaniber M 2017 Nano Lett. 17 392Google Scholar

    [68]

    Thompson S E, Armstrong M, Auth C, Alavi M, Buehler M, Chau R, Cea S, Ghani T, Glass G, Hoffman T, Jan C H, Kenyon C, Klaus J, Kuhn K, Ma Z Y, McIntyre B, Mistry K, Murthy A, Obradovic B, Nagisetty R, Nguyen P, Sivakumar S, Shaheed R, Shiften L, Tufts B, Tyagi S, Bohr M, El-Mansy Y 2004 IEEE Trans. Electron Devices 51 1790Google Scholar

    [69]

    Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592Google Scholar

    [70]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [71]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [72]

    Kern J, Niehues I, Tonndorf P, Schmidt R, Wigger D, Schneider R, Stiehm T, de Vasconcellos S M, Reiter D E, Kuhn T, Bratschitsch R 2016 Adv. Mater. 28 7101Google Scholar

    [73]

    Branny A, Kumar S, Proux R, Gerardot B D 2017 Nat. Commun. 8 15053Google Scholar

    [74]

    Govorkov S V, Emel'yanov V I, Koroteev N I, Petrov G I, Shumay I L, Yakovlev V V 1989 J. Opt. Soc. Am. B 6 1117Google Scholar

    [75]

    Mennel L, Furchi M M, Wachter S, Paur M, Polyushkin D K, Mueller T 2018 Nat. Commun. 9 516Google Scholar

    [76]

    Lyubchanskii I L, Dadoenkova N N, Lyubchanskii M I, Rasing T, Jeong J W, Shin S C 2000 Appl. Phys. Lett. 76 1848Google Scholar

    [77]

    Li D W, Wei C Y R, Song J F, Huang X, Wang F, Liu K, Xiong W, Hong X, Cui B, Feng A X, Jiang L, Lu Y F 2019 Nano Lett. 19 4195Google Scholar

    [78]

    Neshev D, Aharonovich I 2018 Light-Sci. Appl. 7 58Google Scholar

    [79]

    Hu G W, Hong X M, Wang K, Wu J, Xu H X, Zhao W C, Liu W W, Zhang S, Garcia-Vidal F, Wang B, Lu P X, Qiu C W 2019 Nat. Photonics 13 467Google Scholar

    [80]

    Marino G, Gigli C, Rocco D, Lemaitre A, Favero I, De Angelis C, Leo G 2019 Acs Photonics 6 1226Google Scholar

    [81]

    Busschaert S, Flory N, Papadopoulos S, Parzefall M, Heeg S, Novotny L 2019 Nano Lett. 19 6097Google Scholar

    [82]

    Chen J W, Wang K, Long H, Han X B, Hu H B, Liu W W, Wang B, Lu P X 2018 Nano Lett. 18 1344Google Scholar

    [83]

    张文君, 高龙, 魏红, 徐红星 2019 物理学报 68 147302Google Scholar

    Zhang W J, Gao L, Wei H, Xu H X 2019 Acta Phys. Sin. 68 147302Google Scholar

    [84]

    Huang J, Akselrod G M, Ming T, Kong J, Mikkelsen M H 2018 Acs Photonics 5 552Google Scholar

    [85]

    Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L, Li L J, Zhao W J, Eda G, Zhang W J, Grinblat G, Maier S A, Yang J K W, Qiu C W, Wee A T S 2016 Nat. Commun. 7 11283Google Scholar

    [86]

    Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar

    [87]

    Najmaei S, Mlayah A, Arbouet A, Girard C, Leotin J, Lou J 2014 ACS Nano 8 12682Google Scholar

    [88]

    Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W J, Johnson A T C, Agarwal R 2015 Nano Lett. 15 3646Google Scholar

    [89]

    Liu W J, Lee B, Naylor C H, Ee H S, Park J, Johnson A T C, Agarwal R 2016 Nano Lett. 16 1262Google Scholar

    [90]

    Fedele S, Hakami M, Murphy A, Pollard R, Rice J 2016 Appl. Phys. Lett. 108 053102Google Scholar

    [91]

    Lee B, Liu W J, Naylor C H, Park J, Malek S C, Berger J S, Johnson A T C, Agarwal R 2017 Nano Lett. 17 4541Google Scholar

    [92]

    Han X, Wang K, Persaud P D, Xing X, Liu W, Long H, Li F, Wang B, Singh M R, Lu P X 2020 ACS Photonics 7 3Google Scholar

    [93]

    Wen X L, Xu W G, Zhao W J, Khurgin J B, Xiong Q H 2018 Nano Lett. 18 1686Google Scholar

    [94]

    Shi J W, Liang W Y, Raja S S, Sang Y G, Zhang X Q, Chen C A, Wang Y R, Yang X Y, Lee Y H, Ahn H, Gwo S 2018 Laser Photon. Rev. 12 1800188Google Scholar

    [95]

    Wang Z, Dong Z G, Zhu H, Jin L, Chiu M H, Li L J, Xu Q H, Eda G, Maier S A, Wee A T S, Qiu C W, Yang J K W 2018 ACS Nano 12 1859Google Scholar

    [96]

    Dong Z G, Asbahi M, Lin J, Zhu D, Wang Y M, Hippalgaonkar K, Chu H S, Goh W P, Wang F K, Huang Z W, Yang J K W 2015 Nano Lett. 15 5976Google Scholar

    [97]

    Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C, Lee Y H, Kéna-Cohen S, Menon V M 2015 Nat. Photonics 9 30Google Scholar

    [98]

    Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, van der Zande A, Trusheim M E, Hatami F, Heinz T F, Hone J, Englund D 2013 Appl. Phys. Lett. 103 181119Google Scholar

    [99]

    Schwarz S, Dufferwiel S, Walker P M, Withers F, Trichet A A P, Sich M, Li F, Chekhovich E A, Borisenko D N, Kolesnikov N N, Novoselov K S, Skolnick M S, Smith J M, Krizhanovskii D N, Tartakovskii A I 2014 Nano Lett. 14 7003Google Scholar

    [100]

    Yi F, Ren M L, Reed J C, Zhu H, Hou J C, Naylor C H, Johnson A T C, Agarwal R, Cubukcu E 2016 Nano Lett. 16 1631Google Scholar

    [101]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [102]

    Khitrova G, Gibbs H M, Jahnke F, Kira M, Koch S W 1999 Rev. Mod. Phys. 71 1591Google Scholar

    [103]

    Painter, L ee, Scherer, Yariv, O'Brien, Dapkus, Kim I 1999 Science 284 1819Google Scholar

    [104]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282Google Scholar

    [105]

    Chen H T, Corboliou V, Solntsev A S, Choi D Y, Vincenti M A, de Ceglia D, de Angelis C, Lu Y R, Neshev D N 2017 Light-Sci. Appl. 6 e17060Google Scholar

    [106]

    Gan X T, Zhao C Y, Hu S Q, Wang T, Song Y, Li J, Zhao Q H, Jie W Q, Zhao J L 2018 Light-Sci. Appl. 7 17126Google Scholar

    [107]

    Zhou X, Cheng J X, Zhou Y B, Cao T, Hong H, Liao Z M, Wu S W, Peng H L, Liu K H, Yu D P 2015 J. Am. Chem. Soc. 137 7994Google Scholar

    [108]

    Watanabe T, Abe H, Nishijima Y, Baba T 2014 Appl. Phys. Lett. 104 121108Google Scholar

    [109]

    Jang H, Dhakal K P, Joo K I, Yun W S, Shinde S M, Chen X, Jeong S M, Lee S W, Lee Z, Lee J, Ahn J H, Kim H 2018 Adv. Mater. 30 1705190Google Scholar

    [110]

    Lin K Q, Bange S, Lupton J M 2019 Nat. Phys. 15 242Google Scholar

  • 图 1  (a) MoS2原子排列的侧视图(左)和俯视图(右), 其中俯视图中对应扶手椅和Z字形两个晶体取向; (b) 机械剥离方法得到的不同层数MoS2的光学照片[16]; (c) 2H相MoS2二次谐波信号随层数增加呈振荡减小的趋势[16]; (d)人工折叠的两层MoS2 (左)以及对应的二次谐波成像(右)[31]; (e) 3R相MoS2晶体结构及倍频偶极排列[32]; (f) 3R相MoS2二次谐波呈平方递增的趋势[32]

    Fig. 1.  (a) Side view (left) and top view (right) of MoS2 atomic structure. The highlighted armchair direction and zigzag direction correspond to the top view. (b) Mechanical exfoliated MoS2 with different layers[16]. (c) 2H phase MoS2 layers show diminishing the oscillation in SHG signal[16]. (d) Optical image of artificial folded MoS2 (left) and its corresponding SHG image(right)[31]. (e) Crystal structure of 3R phase MoS2 and corresponding SH dipole[32]. (f) 3R phase MoS2 layers show quadratic enhanced SHG with the increase of layers[32].

    图 2  产生高效二次谐波的二维材料 (a)螺旋WS2的光学照片及图中虚线正方形区域内放大的螺旋WS2样品中心AFM图片[39]; (b)螺旋WS2的二次谐波强度随层数递增[39]; (c) 金字塔结构的WS2纳米片结构示意图[41]; (d)金字塔形的WS2纳米片边缘形成高效二次谐波[41]

    Fig. 2.  CVD grown TMDCs with highly efficient SHG: (a) Optical image (left) and zoom in AFM image (right) of spiral WS2 flake[39]; (b) layer dependent SHG of spiral WS2 flake[39]; (c) schematic illustration of pyramid-like WS2 structure[41]; (d) pyramid-like WS2 displays high intensity of residual edge SHG signal[41].

    图 3  二次谐波的偏振特性 (a) 单层MoS2的二次谐波偏振极化图[16]; (b)单层MoS2晶体取向俯视图, 其中x方向代表扶手椅方向, y方向代表Z字形方向, θ角是激发光入射方向与扶手椅方向的夹角[16]; (c) WS2/MoS2横向外延异质结[44]以及(d) WSe2/WS2 AA和AB堆垛结构纵向外延异质结[45]的二次谐波偏振极化图, 其中插图是异质结的二次谐波成像; (e) 人工堆垛两种二维材料使二次谐波极化方向产生叠加[46]; (f)—(h)利用二次谐波偏振区分单层MoS2中不同晶界与畴界[47]

    Fig. 3.  Polarization properties of SHG in TMDCs: (a) SHG polarization in monolayer MoS2 shows six fold rotation symmetry[16]; (b) top view of MoS2 crystallographic orientation, where x represents armchair direction, y represents zigzag direction and θ is the angle between input laser and armchair direction [16]; SHG polarization in (c) WS2/MoS2 laterally epitaxial heterostructure[44] and (d) WSe2/WS2 AA, AB vertical heterostructure[45], where the insets shows correspongding SHG mapping; (e) superposition of SHG polarization by artificial stacks of two different 2D materials[46]; (f)−(h) demonstration of distinguishing of different grain boundary in monolayer MoS2 thin film be SHG polarization[47].

    图 4  二次谐波的激子共振特性 (a) 原理图解释两个入射光子共振A激子的2p态产生二次谐波[50]; (b) 4 K下单层WSe2波长依赖的二次谐波信号[50]; (c) 单层(深蓝)与三层(绿) MoS2二阶非线性极化率与吸收光谱作为激发光波长的函数[16]; (d), (e) 对比螺旋WS2二次谐波激子共振与吸收光谱说明二次谐波增强在稍高于带隙能量处[51]; (f) 对比单层硒硫化钼合金二次谐波(散点)与荧光光谱(实线)[52]; (g), (h) 气象生长单层MoS2边缘增强效应[47]

    Fig. 4.  Exciton resonance properties of SHG in TMDCs: (a) Schematic illustration of SHG when two incident photons are resonant with 2p state of A exciton[50]; (b) excitation wavelength dependent SHG of monolayer WSe2 at T = 4 K[50]; (c) second order nonlinear susceptibility and absorption served as the function of pump laser energy in monolayer (blue) and trilayer (green) MoS2[16]; (d), (e) illustration of SHG enhancement in spiral WS2 flake when the excitation energy slightly above bandgap by comparison of reflective spectrum with SHG spectrum[51]; (f) SHG spectra (dotted traces) of monolayer alloys and corresponding room-temperature PL spectra (solid traces)[52]; (g), (h) CVD grown monolayer MoS2 flakes show edge enhanced SHG[47].

    图 5  二次谐波的能谷选择特性 (a)单层的WSe2展现出与激发光相反的圆偏振二次谐波[59]; (b)二维材料二次谐波能谷光学选择定则[59]

    Fig. 5.  SHG valley selection rules: (a) Circular polarization-resolved SHG spectra showing the generation of counter-circular SHG in monolayer WSe2[59]; (b) interband valley optical selection rules for SHG in 2D TMDCs[59].

    图 6  电调控二次谐波 (a) 双层MoS2微电容器件原理图[67]; (b) 双层MoS2的二次谐波作为施加电压以及发射波长的函数[67]; (c) 双层WSe2中背栅调控可逆的二次谐波[66]; (d) 单层WSe2晶体管的光学图片[59]; (e) 单层WSe2二次谐波在共振激发下随选定栅压的变化[59]; (f) 单层WSe2二次谐波作为栅压和激发能量函数的强度图[59]

    Fig. 6.  Electric field modulated SHG: (a) Schematic illustration of bilayer MoS2 microcapacitor device[67]; (b) bilayer MoS2 SHG intensity as the function of applied voltage and SHG emission energy[67]; (c) reversible SHG induced by back gate in bilayer WSe2[66]; (d) optical image of monolayer WSe2 transistor[59]; (e) exciton resonant monolayer WSe2 SHG spectra at selected gate voltage[59]; (f) monolayer WSe2 SHG intensity as the function of applied gate voltage and SHG emission energy[59].

    图 7  应变调控二次谐波 (a)轴向拉升应变导致MoSe2二次谐波偏振变化[26]; (b)通过二次谐波表征MoS2的全应变场[75]; (c) TiO2/MoS2异质结结区处应变提高MoS2二次谐波[77]

    Fig. 7.  Strain modulated SHG: (a) MoSe2 SHG polarization changed by uniaxial tensile strain[26]; (b) uniaxial strain map of MoS2 monolayer flake[75]; (c) schematic illustration (up) and SHG mapping (down) of TiO2/MoS2 structure[77].

    图 8  超表面调控二次谐波 (a)控制纳米天线相位梯度导向二次谐波出射方向[81]; (b) 相位δx = δy = 0时MoS2二次谐波出射在0°[81]; (c) 周期性的矩形金小孔构成的超表面结构[82]; (d)超表面/WS2构成的超透镜对二次谐波在传播方向上形成聚焦效果[82]; (e)金超表面导向二阶谷光子的原理图[79]; (f)实际的二阶光场变化, 0和1代表强度等级[79]

    Fig. 8.  Metasurfaces modulated SHG: (a) Schematic illustration of a MoS2-gold phased array antenna steering SHG emission[81]; (b) polar plot of the calculated (line) and measured (points) SH pattern along the intensity maximum when phase delay δx = δy = 0[81]; (c) the SEM image of the fabricated gold metasurface with rectangular nanoholes of different orientation[82]; (d) the experimental results of SHG focusing by using the hybrid metasurfaces[82]; (e) schematic representations of steering second-harmonic waves on RCP pumping with monolayer WS2[79]; (f) evolution of the light field for the case shown in (c), “0” and “1” label the intensity order[79].

    图 9  表面等离激元提高二维材料二次谐波 (a) NPoM模型中, 纳米腔对入射电场产生限域作用(上), 单个纳米银颗粒对WS2二次谐波成像的增强(下)[92]; (b)对比不同结构的表面等离激元阵列/半导体二次谐波, 其中123区域分别代表阵列, 两层WSe2/阵列, 与两层WSe2区域[93]; (c) 银纳米栅表面等离激元结构增强WS2二次谐波达400倍[94]; (d) PDMS上表面等离激元阵列对WSe2二次谐波增强三个量级[95]

    Fig. 9.  SHG enhancement by plasmonics: (a) Nano cavity strongly confines incident light field (up), and SHG enhancement by Ag nanoparticle in monolayer WS2 (down)[92]; (b) compare of SHG signal in different plasmonic array/semiconductor, where points 1, 2, 3 represent the area of nanorod, nanorod/bilayer WSe2, and bilayer WSe2, respectively[93]; (c) SHG enhancement factor over 400 in monolayer WS2 reached by Ag nanogroove grating[94]; (d) SHG enhancement over 3 orders in monolayer WSe2 by plasmonic structure on PDMS[95].

    图 10  微腔、光子晶体增强二维材料二次谐波 (a)双共振法帕纳米微腔增强二次谐波[100]; (b)硅波导增强二硒化钼二次谐波[105]; (c)连续激光激发硒化镓/硅光子晶体结构二次谐波[106]

    Fig. 10.  SHG enhancement by micro cavity and photonic crystal: (a) Enhancement of SHG from monolayer MoS2 in a doubly resonant on-chip optical cavity[100]; (b) enhancement of SHG by silicon waveguide[105]; (c) CW excitation of SHG from GaSe/photonic crystal[106].

  • [1]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [2]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [5]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [6]

    Wang J, Han J, Chen X, Wang X 2019 InfoMat 1 33Google Scholar

    [7]

    Wang X, Cui Y, Li T, Lei M, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1801274Google Scholar

    [8]

    Schornbaum J, Winter B, Schiessl S P, Gannott F, Katsukis G, Guldi D M, Spiecker E, Zaumseil J 2014 Adv. Funct. Mater. 24 5798Google Scholar

    [9]

    Lai J W, Liu X, Ma J C, Wang Q S, Zhang K A, Ren X, Liu Y A, Gu Q Q, Zhuo X, Lu W, Wu Y, Li Y, Feng J, Zhou S Y, Chen J H, Sun D 2018 Adv. Mater. 30 1707152Google Scholar

    [10]

    Wu D, Ma Y C, Niu Y Y, Liu Q M, Dong T, Zhang S J, Niu J S, Zhou H B, Wei J, Wang Y X, Zhao Z R, Wang N L 2018 Sci. Adv. 4 eaao3057Google Scholar

    [11]

    Komsa H P, Krasheninnikov A V 2012 Phys. Rev. B 86 241201Google Scholar

    [12]

    Li L, Han W, Pi L, Niu P, Han J, Wang C, Su B, Li H, Xiong J, Bando Y, Zhai T 2019 InfoMat 1 54Google Scholar

    [13]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [14]

    Li Y L, Rao Y, Mak K F, You Y M, Wang S Y, Dean C R, Heinz T F 2013 Nano Lett. 13 3329Google Scholar

    [15]

    Jones A M, Yu H Y, Ghimire N J, Wu S F, Aivazian G, Ross J S, Zhao B, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Nanotechnol. 8 634Google Scholar

    [16]

    Malard L M, Alencar T V, Barboza A P M, Mak K F, de Paula A M 2013 Phys. Rev. B 87 201401Google Scholar

    [17]

    Martinez A, Sun Z P 2013 Nat. Photonics 7 842Google Scholar

    [18]

    令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207Google Scholar

    Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207Google Scholar

    [19]

    王小发, 张俊红, 高子叶, 夏光琼, 吴正茂 2017 物理学报 66 114209Google Scholar

    Wang X F, Zhang J H, Gao Z Y, Xia G Q, Wu Z M 2017 Acta Phys. Sin. 66 114209Google Scholar

    [20]

    Mu H R, Wang Z T, Yuan J, Xiao S, Chen C Y, Chen Y, Chen Y, Song J C, Wang Y S, Xue Y Z, Zhang H, Bao Q L 2015 Acs Photonics 2 832Google Scholar

    [21]

    Pantazis P, Maloney J, Wu D, Fraser S E 2010 Proc. Natl. Acad. Sci. U. S. A. 107 14535Google Scholar

    [22]

    Ren M L, Agarwal R, Liu W J, Agarwal R 2015 Nano Lett. 15 7341Google Scholar

    [23]

    Nikogosyan D N 1991 Appl. Phys. A, Solids Surf. A52 359Google Scholar

    [24]

    Ishigame Y, Suhara T, Nishihara H 1991 Optics letters 16 375Google Scholar

    [25]

    Wen X, Gong Z, Li D 2019 Info.Mat. 1 317Google Scholar

    [26]

    Liang J, Zhang J, Li Z Z, Hong H, Wang J H, Zhang Z H, Zhou X, Qiao R X, Xu J Y, Gao P, Liu Z R, Liu Z F, Sun Z P, Meng S, Liu K H, Yu D P 2017 Nano Lett. 17 7539Google Scholar

    [27]

    Kumar N, Najmaei S, Cui Q N, Ceballos F, Ajayan P M, Lou J, Zhao H 2013 Phys. Rev. B 87 161403Google Scholar

    [28]

    Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L, Xu S J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar

    [29]

    Janisch C, Wang Y X, Ma D, Mehta N, Elias A L, Perea-Lopez N, Terrones M, Crespi V, Liu Z W 2014 Sci. Rep. 4 5530Google Scholar

    [30]

    Wagoner G A, Persans P D, Van Wagenen E A, Korenowski G M 1998 J. Opt. Soc. Am. B, Opt. Phys. 15 1017Google Scholar

    [31]

    Jiang T, Liu H R, Huang D, Zhang S, Li Y G, Gong X G, Shen Y R, Liu W T, Wu S W 2014 Nat. Nanotechnol. 9 825Google Scholar

    [32]

    Zhao M, Ye Z L, Suzuki R, Ye Y, Zhu H Y, Xiao J, Wang Y, Iwasa Y, Zhang X 2016 Light-Sci. Appl. 5 e16131Google Scholar

    [33]

    Zeng Z X S, Sun X X, Zhang D L, Zheng W H, Fan X P, He M, Xu T, Sun L T, Wang X, Pan A L 2019 Adv. Funct. Mater. 29 1806874Google Scholar

    [34]

    Yang D, Hu X Z, Zhuang M H, Ding Y, Zhou S S, Li A J, Yu Y W, Li H Q, Luo Z T, Gan L, Zhai T Y 2018 Adv. Funct. Mater. 28 1800785Google Scholar

    [35]

    Song Y, Tian R J, Yang J L, Yin R, Zhao J L, Gan X T 2018 Adv. Opt. Mater. 6 1701334Google Scholar

    [36]

    Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J, Zhang X 2017 Nature 550 487Google Scholar

    [37]

    Hao Q Y, Yi H, Su H M, Wei B, Wang Z, Lao Z Z, Chai Y, Wang Z C, Jin C H, Dai J F, Zhang W J 2019 Nano Lett. 19 2634Google Scholar

    [38]

    Li F, Feng Y X, Li Z W, Ma C, Qu J Y, Wu X P, Li D, Zhang X H, Yang T F, He Y Q, Li H L, Hu X L, Fan P, Chen Y, Zheng B Y, Zhu X L, Wang X, Duan X F, Pan A L 2019 Adv. Mater. 31 1901351Google Scholar

    [39]

    Fan X P, Jiang Y, Zhuang X J, Liu H J, Xu T, Zheng W H, Fan P, Li H L, Wu X P, Zhu X L, Zhang Q L, Zhou H, Hu W, Wang X, Sun L T, Duan X F, Pan A L 2017 ACS Nano 11 4892Google Scholar

    [40]

    Fan X P, Zhao Y Z, Zheng W H, Li H L, Wu X P, Hu X L, Zhang X H, Zhu X L, Zhang Q L, Wang X, Yang B, Chen J H, Jin S, Pan A 2018 Nano Lett. 18 3885Google Scholar

    [41]

    Lin X Q, Liu Y Y, Wang K, Wei C, Zhang W, Yan Y L, Li Y J, Yao J N, Zhao Y S 2018 ACS Nano 12 689Google Scholar

    [42]

    Isakov D V, Gomes E D, Vieira L G, Dekola T, Belsley M S, Almeida B G 2011 ACS Nano 5 73Google Scholar

    [43]

    Hu H B, Wang K, Long H, Liu W W, Wang B, Lu P X 2015 Nano Lett. 15 3351Google Scholar

    [44]

    Zhang X Q, Lin C H, Tseng Y W, Huang K H, Lee Y H 2015 Nano Lett. 15 410Google Scholar

    [45]

    Wu X P, WanG X, Li H L, Zeng Z X S, Zheng B Y, Zhang D L, Li F, Zhu X L, Jiang Y, Pan A L 2019 Nano Res. 12 3123Google Scholar

    [46]

    Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H, Chang P S, Chou Y C, Chang W H 2014 ACS Nano 8 2951Google Scholar

    [47]

    Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K, Hone J C, Zhang X 2014 Science 344 488Google Scholar

    [48]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [49]

    Shi H Y, Yan R S, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L B 2013 ACS Nano 7 1072Google Scholar

    [50]

    Wang G, Marie X, Gerber I, Amand T, Lagarde D, Bouet L, Vidal M, Balocchi A, Urbaszek B 2015 Phys. Rev. Lett. 114 097403Google Scholar

    [51]

    Fan X, Ji Z, Fei R, Zheng W, Liu W, Zhu X, Chen S, Yang L, Liu H, Pan A 2020 Nano Lett. 20 2667Google Scholar

    [52]

    Le C T, Clark D J, Ullah F, Jang J I, Senthilkumar V, Sim Y, Seong M J, Chung K H, Kim J W, Park S, Rhim S H, Kim G, Kim Y S 2017 Acs Photonics 4 38Google Scholar

    [53]

    Yoshida S, Kobayashi Y, Sakurada R, Mori S, Miyata Y, Mogi H, Koyama T, Takeuchi O, Shigekawa H 2015 Sci. Rep. 5 14808Google Scholar

    [54]

    Lin K I, Ho Y H, Liu S B, Ciou J J, Huang B T, Chen C, Chang H C, Tu C L, Chen C H 2018 Nano Lett. 18 793Google Scholar

    [55]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [56]

    Mak K F, He K L, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494Google Scholar

    [57]

    Zeng H L, Dai J F, Yao W, Xiao D, Cui X D 2012 Nat. Nanotechnol. 7 490Google Scholar

    [58]

    Sun Z, Gu J, Ghazaryan A, Shotan Z, Considine C R, Dollar M, Chakraborty B, Liu X Z, Ghaemi P, Kena-Cohen S, Menon V M 2017 Nat. Photonics 11 491Google Scholar

    [59]

    Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S F, Yan J Q, Mandrus D G, Yao W, Xu X D 2015 Nat. Nanotechnol. 10 407Google Scholar

    [60]

    Xiao J, Ye Z L, Wang Y, Zhu H Y, Wang Y, Zhang X 2015 Light-Sci. Appl. 4 e366Google Scholar

    [61]

    Manaka T, Lim E, Tamura R, Iwamoto M 2007 Nat. Photonics 1 581Google Scholar

    [62]

    Lee C, Chang R, Bloembergen N 1967 Phys. Rev. Lett. 18 167Google Scholar

    [63]

    Chen S M, Li K F, Li G X, Cheah K W, Zhang S 2019 Light-Sci. Appl. 8 17Google Scholar

    [64]

    Terhune R, Maker P, Savage C 1962 Phys. Rev. Lett. 8 404Google Scholar

    [65]

    Ren M L, Berger J S, Liu W J, Liu G R, Agarwal R 2018 Nat. Commun. 9 186Google Scholar

    [66]

    Yu H K, Talukdar D, Xu W G, Khurgin J B, Xiong Q H 2015 Nano Lett. 15 5653Google Scholar

    [67]

    Klein J, Wierzbowski J, Steinhoff A, Florian M, Rosner M, Heimbach F, Muller K, Jahnke F, Wehling T O, Finley J J, Kaniber M 2017 Nano Lett. 17 392Google Scholar

    [68]

    Thompson S E, Armstrong M, Auth C, Alavi M, Buehler M, Chau R, Cea S, Ghani T, Glass G, Hoffman T, Jan C H, Kenyon C, Klaus J, Kuhn K, Ma Z Y, McIntyre B, Mistry K, Murthy A, Obradovic B, Nagisetty R, Nguyen P, Sivakumar S, Shaheed R, Shiften L, Tufts B, Tyagi S, Bohr M, El-Mansy Y 2004 IEEE Trans. Electron Devices 51 1790Google Scholar

    [69]

    Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592Google Scholar

    [70]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [71]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [72]

    Kern J, Niehues I, Tonndorf P, Schmidt R, Wigger D, Schneider R, Stiehm T, de Vasconcellos S M, Reiter D E, Kuhn T, Bratschitsch R 2016 Adv. Mater. 28 7101Google Scholar

    [73]

    Branny A, Kumar S, Proux R, Gerardot B D 2017 Nat. Commun. 8 15053Google Scholar

    [74]

    Govorkov S V, Emel'yanov V I, Koroteev N I, Petrov G I, Shumay I L, Yakovlev V V 1989 J. Opt. Soc. Am. B 6 1117Google Scholar

    [75]

    Mennel L, Furchi M M, Wachter S, Paur M, Polyushkin D K, Mueller T 2018 Nat. Commun. 9 516Google Scholar

    [76]

    Lyubchanskii I L, Dadoenkova N N, Lyubchanskii M I, Rasing T, Jeong J W, Shin S C 2000 Appl. Phys. Lett. 76 1848Google Scholar

    [77]

    Li D W, Wei C Y R, Song J F, Huang X, Wang F, Liu K, Xiong W, Hong X, Cui B, Feng A X, Jiang L, Lu Y F 2019 Nano Lett. 19 4195Google Scholar

    [78]

    Neshev D, Aharonovich I 2018 Light-Sci. Appl. 7 58Google Scholar

    [79]

    Hu G W, Hong X M, Wang K, Wu J, Xu H X, Zhao W C, Liu W W, Zhang S, Garcia-Vidal F, Wang B, Lu P X, Qiu C W 2019 Nat. Photonics 13 467Google Scholar

    [80]

    Marino G, Gigli C, Rocco D, Lemaitre A, Favero I, De Angelis C, Leo G 2019 Acs Photonics 6 1226Google Scholar

    [81]

    Busschaert S, Flory N, Papadopoulos S, Parzefall M, Heeg S, Novotny L 2019 Nano Lett. 19 6097Google Scholar

    [82]

    Chen J W, Wang K, Long H, Han X B, Hu H B, Liu W W, Wang B, Lu P X 2018 Nano Lett. 18 1344Google Scholar

    [83]

    张文君, 高龙, 魏红, 徐红星 2019 物理学报 68 147302Google Scholar

    Zhang W J, Gao L, Wei H, Xu H X 2019 Acta Phys. Sin. 68 147302Google Scholar

    [84]

    Huang J, Akselrod G M, Ming T, Kong J, Mikkelsen M H 2018 Acs Photonics 5 552Google Scholar

    [85]

    Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L, Li L J, Zhao W J, Eda G, Zhang W J, Grinblat G, Maier S A, Yang J K W, Qiu C W, Wee A T S 2016 Nat. Commun. 7 11283Google Scholar

    [86]

    Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar

    [87]

    Najmaei S, Mlayah A, Arbouet A, Girard C, Leotin J, Lou J 2014 ACS Nano 8 12682Google Scholar

    [88]

    Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W J, Johnson A T C, Agarwal R 2015 Nano Lett. 15 3646Google Scholar

    [89]

    Liu W J, Lee B, Naylor C H, Ee H S, Park J, Johnson A T C, Agarwal R 2016 Nano Lett. 16 1262Google Scholar

    [90]

    Fedele S, Hakami M, Murphy A, Pollard R, Rice J 2016 Appl. Phys. Lett. 108 053102Google Scholar

    [91]

    Lee B, Liu W J, Naylor C H, Park J, Malek S C, Berger J S, Johnson A T C, Agarwal R 2017 Nano Lett. 17 4541Google Scholar

    [92]

    Han X, Wang K, Persaud P D, Xing X, Liu W, Long H, Li F, Wang B, Singh M R, Lu P X 2020 ACS Photonics 7 3Google Scholar

    [93]

    Wen X L, Xu W G, Zhao W J, Khurgin J B, Xiong Q H 2018 Nano Lett. 18 1686Google Scholar

    [94]

    Shi J W, Liang W Y, Raja S S, Sang Y G, Zhang X Q, Chen C A, Wang Y R, Yang X Y, Lee Y H, Ahn H, Gwo S 2018 Laser Photon. Rev. 12 1800188Google Scholar

    [95]

    Wang Z, Dong Z G, Zhu H, Jin L, Chiu M H, Li L J, Xu Q H, Eda G, Maier S A, Wee A T S, Qiu C W, Yang J K W 2018 ACS Nano 12 1859Google Scholar

    [96]

    Dong Z G, Asbahi M, Lin J, Zhu D, Wang Y M, Hippalgaonkar K, Chu H S, Goh W P, Wang F K, Huang Z W, Yang J K W 2015 Nano Lett. 15 5976Google Scholar

    [97]

    Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C, Lee Y H, Kéna-Cohen S, Menon V M 2015 Nat. Photonics 9 30Google Scholar

    [98]

    Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, van der Zande A, Trusheim M E, Hatami F, Heinz T F, Hone J, Englund D 2013 Appl. Phys. Lett. 103 181119Google Scholar

    [99]

    Schwarz S, Dufferwiel S, Walker P M, Withers F, Trichet A A P, Sich M, Li F, Chekhovich E A, Borisenko D N, Kolesnikov N N, Novoselov K S, Skolnick M S, Smith J M, Krizhanovskii D N, Tartakovskii A I 2014 Nano Lett. 14 7003Google Scholar

    [100]

    Yi F, Ren M L, Reed J C, Zhu H, Hou J C, Naylor C H, Johnson A T C, Agarwal R, Cubukcu E 2016 Nano Lett. 16 1631Google Scholar

    [101]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [102]

    Khitrova G, Gibbs H M, Jahnke F, Kira M, Koch S W 1999 Rev. Mod. Phys. 71 1591Google Scholar

    [103]

    Painter, L ee, Scherer, Yariv, O'Brien, Dapkus, Kim I 1999 Science 284 1819Google Scholar

    [104]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282Google Scholar

    [105]

    Chen H T, Corboliou V, Solntsev A S, Choi D Y, Vincenti M A, de Ceglia D, de Angelis C, Lu Y R, Neshev D N 2017 Light-Sci. Appl. 6 e17060Google Scholar

    [106]

    Gan X T, Zhao C Y, Hu S Q, Wang T, Song Y, Li J, Zhao Q H, Jie W Q, Zhao J L 2018 Light-Sci. Appl. 7 17126Google Scholar

    [107]

    Zhou X, Cheng J X, Zhou Y B, Cao T, Hong H, Liao Z M, Wu S W, Peng H L, Liu K H, Yu D P 2015 J. Am. Chem. Soc. 137 7994Google Scholar

    [108]

    Watanabe T, Abe H, Nishijima Y, Baba T 2014 Appl. Phys. Lett. 104 121108Google Scholar

    [109]

    Jang H, Dhakal K P, Joo K I, Yun W S, Shinde S M, Chen X, Jeong S M, Lee S W, Lee Z, Lee J, Ahn J H, Kim H 2018 Adv. Mater. 30 1705190Google Scholar

    [110]

    Lin K Q, Bange S, Lupton J M 2019 Nat. Phys. 15 242Google Scholar

  • [1] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [2] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展. 物理学报, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [3] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响. 物理学报, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [4] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [5] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [6] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [7] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [8] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强. 物理学报, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [9] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [10] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质. 物理学报, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [11] 关晓通, 傅文杰, 鲁钝, 杨同斌, 鄢扬, 袁学松. 双共焦波导结构二次谐波太赫兹回旋管谐振腔设计. 物理学报, 2020, 69(6): 068401. doi: 10.7498/aps.69.20191222
    [12] 马明宇, 吴晗, 陈卓. 金属开口环谐振器超构分子中二次谐波偏振态的调控. 物理学报, 2019, 68(21): 214205. doi: 10.7498/aps.68.20190837
    [13] 戴玉蓉, 丁德胜. 小瓣数贝塞尔声束的二次谐波. 物理学报, 2011, 60(12): 124302. doi: 10.7498/aps.60.124302
    [14] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [15] 来国军, 刘濮鲲. W波段二次谐波回旋行波管放大器的模拟与设计. 物理学报, 2007, 56(8): 4515-4522. doi: 10.7498/aps.56.4515
    [16] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [17] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [18] 马 晶, 章若冰, 刘 博, 朱 晨, 柴 路, 张伟力, 张志刚, 王清月. 飞秒BBO光参量放大中闲频光二次谐波的产生. 物理学报, 2005, 54(8): 3675-3679. doi: 10.7498/aps.54.3675
    [19] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论. 物理学报, 2003, 52(2): 372-376. doi: 10.7498/aps.52.372
    [20] 倪培根, 马博琴, 程丙英, 张道中. 二维LiNbO3非线性光子晶体. 物理学报, 2003, 52(8): 1925-1928. doi: 10.7498/aps.52.1925
计量
  • 文章访问数:  27882
  • PDF下载量:  1858
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 修回日期:  2020-04-21
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-09-20

/

返回文章
返回