搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非贵金属表面增强拉曼散射基底的研究进展

刘小红 姜珊 常林 张炜

引用本文:
Citation:

非贵金属表面增强拉曼散射基底的研究进展

刘小红, 姜珊, 常林, 张炜

Recent research progress of non-noble metal based surface-enhanced Raman scattering substrates

Liu Xiao-Hong, Jiang Shan, Chang Lin, Zhang Wei
PDF
HTML
导出引用
  • 表面增强拉曼散射(surface-enhanced Raman scattering, SERS)在分析检测领域中具有重要地位, 然而随着其不断发展, 贵金属SERS基底在实际应用中受到限制. 基于C, Ti, Zn, Cu, Mo, W等非贵金属纳米材料的SERS基底相比于贵金属基底具有更优异的经济性、稳定性、选择性以及生物相容性等, 逐渐被广泛研究和应用. 并且由于其化学增强占主导的特性, 非贵金属基底为SERS化学增强机理的研究提供了理想的平台. 因此, 本文对近年来非贵金属SERS基底的发展进行了综述, 讨论了不同材料的增强机理及SERS性能, 并探讨了其未来的研究与发展方向.
    Surface-enhanced Raman scattering (SERS) is of great importance in analytical science, the noble-metal such as gold and silver are widely used in SERS research and applications. However, noble-metal based substrates are hampered in practical application. As for comparison, the Non-noble metal especially the semiconductor materials are the emerging SERS research frontier. Non-noble metal (such as C, Ti, Zn, Cu, Mo, W, etc.) nanomaterials based SERS substrate have been widely studied and applied due to their superior stability, selectivity, biocompatibility and low cost comparing to noble metal materials. As the chemical enhancement dominate its total SERS signals, it also provides an ideal platform for the investigation of chemical enhancement mechanism. In this review, we explored the development of non-noble metal SERS substrates, focusing on its enhancement mechanism and SERS performance of different materials as well as the future development direction.
      通信作者: 张炜, andyzhangwei@163.com
    • 基金项目: 国家自然科学基金(批准号: 61575196)、重庆市自然科学基金(批准号: cstc2019jcyj-msxmX0663)、重庆市教委科学技术研究项目(批准号: KJQN201904102)和北碚区基础研究与前沿探索项目(批准号: 2019-2)资助的课题
      Corresponding author: Zhang Wei, andyzhangwei@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575196), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0663), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN201904102), and the Scientific and Technological Program Project of Beibei, China (Grant No. 2019-2)
    [1]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163Google Scholar

    [2]

    Moskovits M 1978 J. Chem. Phys. 69 4159Google Scholar

    [3]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [4]

    Ji W, Zhao B, Ozaki Y 2016 J. Raman Spectrosc. 47 51Google Scholar

    [5]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [6]

    Xue X, Ji W, Mao Z, Mao H, Wang Y, Wang X, Ruan W, Zhao B, Lombardi J R 2012 J. Phys. Chem. C 116 8792Google Scholar

    [7]

    Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photonics 3 1164Google Scholar

    [8]

    Tan Y, Gu J, Xu W, Chen Z, Liu D, Liu Q, Zhang D 2013 ACS Appl. Mater. Interfaces 5 9878Google Scholar

    [9]

    Daglar B, Khudiyev T, Demirel G B, Buyukserin F, Bayindir M 2013 J. Mater. Chem. C 1 7842Google Scholar

    [10]

    赵冰, 徐蔚青, 阮伟东, 韩晓霞 2008 高等学校化学学报 29 2591Google Scholar

    Zhao B, Xu W Q, Ruan W D, Han X X 2008 Chem. J. Chin. Univ. 29 2591Google Scholar

    [11]

    Wang X, Guo L 2020 Angew. Chem. Int. Ed. 59 4231Google Scholar

    [12]

    Zhang Q, Li X, Ma Q, Zhang Q, Bai H, Yi W, Liu J, Han J, Xi G 2017 Nat. Commun. 8 14903Google Scholar

    [13]

    Shi L, Tuzer T U, Fenollosa R, Meseguer F 2012 Adv. Mater. 24 5934Google Scholar

    [14]

    Ji W, Li L, Song W, Wang X, Zhao B, Ozaki Y 2019 Angew. Chem. Int. Ed. 58 14452Google Scholar

    [15]

    Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2008 J. Phys. Chem. C 112 20095Google Scholar

    [16]

    Jung N, Crowthe A C, Kim N, Kim P, Brus L 2010 ACS Nano 4 7005Google Scholar

    [17]

    Feng S, Santos M C D, Carvalho B R, et al. 2016 Sci. Adv. 2 1600322Google Scholar

    [18]

    Huang S, Ling X, Liang L, Song Y, Fang W, Zhang J, Kong J, Meunier V, Dresselhaus M S 2015 Nano Lett. 15 2892Google Scholar

    [19]

    Begliarbekov M, Sul O, Santanello J, Ai N, Zhang X, Yang E H, Strauf S 2011 Nano Lett. 11 1254Google Scholar

    [20]

    Papadakis D, Diamantopoulou A, Pantazopoulos P A, et al. 2019 Nanoscale 11 21542Google Scholar

    [21]

    Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2009 J. Raman Spectrosc. 40 2004Google Scholar

    [22]

    Yang L, Zhang Y, Ruan W, Zhao B, Xu W, Lombardi J R 2010 J. Raman Spectrosc. 41 721Google Scholar

    [23]

    Keshavarz M, Kassanos P, Tan B, Venkatakrishnan K 2020 Nanoscale Horiz. 5 294Google Scholar

    [24]

    Wang X, Shi W, Wang S, Zhao H, Lin J, Yang Z, Chen M, Guo L 2019 J. Am. Chem. Soc. 141 5856Google Scholar

    [25]

    Lin J, Ren W, Li A, Yao C, Chen T, Ma X, Wang X, Wu A 2020 ACS Appl. Mater. Interfaces 12 4204Google Scholar

    [26]

    Alessandri I 2013 J. Am. Chem. Soc. 135 5541Google Scholar

    [27]

    Qi D, Lu L, Wang L, Zhang J 2014 J. Am. Chem. Soc. 136 9886Google Scholar

    [28]

    Sarycheva A, Makaryan T, Maleski K, et al. 2017 J. Phys. Chem. C 121 19983Google Scholar

    [29]

    Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C 2020 Sci. China Mater. 63 794Google Scholar

    [30]

    Wen H, He T J, Xu C Y, Zuo J, Liu F C 1996 Mol. Phys. 88 281Google Scholar

    [31]

    Sun Z, Zhao B, Lombardi J R 2007 Appl. Phys. Lett. 91 221106Google Scholar

    [32]

    Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, Li S, Guo L 2017 Angew. Chem. Int. Ed. 56 9851Google Scholar

    [33]

    Zhao X, Deng M, Rao G, et al. 2018 Small 14 1802477Google Scholar

    [34]

    Li X, Shang Y, Lin J, Li A, Wang X, Li B, Guo L 2018 Adv. Funct. Mater. 28 1801868Google Scholar

    [35]

    Li X, Ren X, Zhang Y, Choy W C, Wei B 2015 Nanoscale 7 11291Google Scholar

    [36]

    Wang R C, Li C H 2011 Acta Mater. 59 822Google Scholar

    [37]

    Lin J, Hao W, Shang Y, Wang X, Qiu D, Ma G, Chen C, Li S, Guo L 2018 Small 14 1703274Google Scholar

    [38]

    Lin J, Shang Y, Li X, Yu J, Wang X, Guo L 2017 Adv. Mater. 29 10Google Scholar

    [39]

    Qiu C, Zhang L, Wang H, Jiang C 2012 J. Phys. Chem. Lett. 3 651Google Scholar

    [40]

    Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S 2013 Nanoscale 5 2784Google Scholar

    [41]

    Zhang Q, Li X, Yi W, Li W, Bai H, Liu J, Xi G 2017 Anal. Chem. 89 11765Google Scholar

    [42]

    Wu H, Zhou X, Li J, Li X, Li B, Fei W, Zhou J, Yin J, Guo W 2018 Small 14 1802276Google Scholar

    [43]

    Cao Y, Liang P, Dong Q, Wang D, Zhang, Tang L, Wang L, Jin S, Ni D, Yu Z 2019 Anal. Chem. 91 8683Google Scholar

    [44]

    Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993Google Scholar

    [45]

    Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, Zhao Z 2015 Nat. Commun. 6 7800Google Scholar

    [46]

    Fan X, Li M, Hao Q, Zhu M, Hou X, Huang H, Ma L, Schmidt O G, Qiu T 2019 Adv. Mater. Interfaces 6 1901133Google Scholar

    [47]

    Zhou C L, Sun L F, Zhang F Q, Gu C J, Zeng S W, Jiang T, Shen X, Ang D S, Zhou J 2019 ACS Appl. Mater. Interfaces 11 34091Google Scholar

    [48]

    Ye Y T, Bai H, Li M C, Tian Z, Du R F, Fan W H, Xi G C 2019 Adv. Mater. Technol. 4 1900282Google Scholar

    [49]

    Hou X Y, Luo X G, Fan X C, Peng Z H, Qiu T 2019 Phys. Chem. Chem. Phys. 21 2611Google Scholar

    [50]

    Wang X, Shi W, She G, Mu L 2011 J. Am. Chem. Soc. 133 16518Google Scholar

    [51]

    侯近龙, 贾祥非, 薛向欣, 陈雷, 宋微, 徐蔚青, 赵冰 2012 高等学校化学学报 33 139Google Scholar

    Hou J L, Jia X F, Xue X X, Chen L, Song W, Xu W Q, Zhao B 2012 Chem. J. Chin. Univ. 33 139Google Scholar

    [52]

    Miao P, Wu J, Du Y, Sun Y, Xu P 2018 J. Mater. Chem. C 6 10855Google Scholar

    [53]

    Miao P, Qin J K, Shen Y, Su H, Dai J, Song B, Du Y, Sun M, Zhang W, Wang H L, Xu C Y, Xu P 2018 Small 14 1704079Google Scholar

    [54]

    Gao M, Miao P, Han X, Sun C, Ma Y, Gao Y, Xu P 2019 Inorg. Chem. Front. 6 2318Google Scholar

    [55]

    Lee N, Schuck P J, Nico P S, Gilbert B 2015 J. Phys. Chem. Lett. 6 970Google Scholar

    [56]

    Fu X, Pan Y, Wang X, Lombardi J R 2011 J. Chem. Phys. 134 024707Google Scholar

    [57]

    Quagliano L G 2004 J. Am. Chem. Soc. 126 7393Google Scholar

    [58]

    Livingstone R, Zhou X, Tamargo M C, Lombardi J R, Quagliano L C, Jean M F 2010 J. Phys. Chem. C 114 17460Google Scholar

  • 图 1  (a) 不同pH下, 4-MBA分子在TiO2基底上的SERS光谱[21]; (b) 4-MBA分子在不同Zn掺杂程度TiO2基底上的SERS光谱[22]; (c) 4-MBA分子在不同体系中的能级图[24]; (d) TiO2球形谐振器(T-rex)的制备流程和T-rex 100样品的SEM图像[26]

    Fig. 1.  (a) SERS spectra of 4-MBA adsorbed on TiO2 nanoparticles under the different pH values[21]; (b) SERS spectra of 4-MBA adsorbed on TiO2 and Zn-doped TiO2[22]; (c) schematic diagram of the HOMO and LUMO of 4-MBA, 4-MBA@a-TiO2, and 4-MBA@c-TiO2[24]; (d) scheme of preparation of TiO2 spherical resonators (Trex). SEM image of T-rex100 sample[26].

    图 2  (a) a-ZnO NCs和c-ZnO NCs的制备过程; (b) a-和c-ZnO NCs的TEM图像和高分辨透射电镜(High-resolution TEM, HRTEM)显微照片; (c)—(e) 单个a-和c-ZnO NCs上的4-MBA, 4-MPY, 4-ATP分子(10-4 M)的SERS光谱, 实测的(M)和模拟的(S)[32]

    Fig. 2.  (a) A schematic of the fabrication of a- and c-ZnO NCs; (b) SEM and TEM images of a- and c-ZnO NCs.; (c)-(e) SERS spectra of 4-MBA, 4-MPY, and 4-ATP (10-4 M) molecules adsorbed onto a single a- and c-ZnO NC, Measured (M) and simulated (S)[32]

    图 3  (a) 4-NBT分子分别在{100}单立方、{110}十二面体和{111}八面体Cu2O粒子上的SERS谱[36]; (b) 分别为立方Cu2O、八面体Cu2O、十二面体Cu2O结构的SEM图[36]; (c) Cu2O立方型超结构的自组装过程[37]

    Fig. 3.  (a) SERS spectra of 4-NBT molecule obtained on single {100}-cubic, {110}-dodecahedral, and {111}-octahedral Cu2O particle, respectively [36]; (b) the SEM images of the cubic Cu2O, octahedral Cu2O, and dodecahedral Cu2O structures[36]; (c) self-assembly process for the formation of Cu2O cube-like superstructures[37].

    图 4  (a) TIS方法制备Cu2O CSs的流程; (b), (c) Cu2O CSs的SEM图和TEM图[40]

    Fig. 4.  (a) Scheme illustration of the TIS process for the formation of Cu2O CSs; (b), (c) SEM and TEM images of Cu2O CSs[40].

    图 5  (a) 哑铃状MoO2纳米晶的TEM图[12]; (b) 2D MoS2上4-MPy的范德华相互作用的模型示意图[7]; (c) MoO2, MoO2-x纳米粒子的XRD图谱和单斜MoO2晶体结构示意图[43]

    Fig. 5.  (a) TEM images of the MoO2 powders[12]; (b) schematic model of the van der Waals interaction of 4-MPy on top of the 2D MoS2[7]; (c) XRD patterns of MoO2 and MoO2-x nanoparticles; Schematic illustrating the crystal structure of monoclinic MoO2[43].

    图 6  (a) WO3和W18O49的结构示意图[45]; (b) WO3-x SERS基底3D结构示意图[47]; (c) 4种不同增强模式实验设置示意图[49]

    Fig. 6.  (a) Structure illustration for WO3 and W18O49 [45]; (b) 3D schematic structure of the WO3-x SERS substrate[47]; (c) schematic illustration of the experiment settings for four different enhancement mode[49].

    图 7  (a) ReS2纳米片SERS效应示意图[53]; (b)空心M(OH)x (M = Fe, Co, Ni)八面体的制备流程[54]

    Fig. 7.  (a) Schematic illustration of the experimental setup for understanding the Raman enhancement mechanism on ReS2 nanosheets [53]; (b) schematic illustration of preparation of hollow M(OH)x (M = Fe, Co, Ni) octahedra[54].

  • [1]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163Google Scholar

    [2]

    Moskovits M 1978 J. Chem. Phys. 69 4159Google Scholar

    [3]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [4]

    Ji W, Zhao B, Ozaki Y 2016 J. Raman Spectrosc. 47 51Google Scholar

    [5]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [6]

    Xue X, Ji W, Mao Z, Mao H, Wang Y, Wang X, Ruan W, Zhao B, Lombardi J R 2012 J. Phys. Chem. C 116 8792Google Scholar

    [7]

    Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photonics 3 1164Google Scholar

    [8]

    Tan Y, Gu J, Xu W, Chen Z, Liu D, Liu Q, Zhang D 2013 ACS Appl. Mater. Interfaces 5 9878Google Scholar

    [9]

    Daglar B, Khudiyev T, Demirel G B, Buyukserin F, Bayindir M 2013 J. Mater. Chem. C 1 7842Google Scholar

    [10]

    赵冰, 徐蔚青, 阮伟东, 韩晓霞 2008 高等学校化学学报 29 2591Google Scholar

    Zhao B, Xu W Q, Ruan W D, Han X X 2008 Chem. J. Chin. Univ. 29 2591Google Scholar

    [11]

    Wang X, Guo L 2020 Angew. Chem. Int. Ed. 59 4231Google Scholar

    [12]

    Zhang Q, Li X, Ma Q, Zhang Q, Bai H, Yi W, Liu J, Han J, Xi G 2017 Nat. Commun. 8 14903Google Scholar

    [13]

    Shi L, Tuzer T U, Fenollosa R, Meseguer F 2012 Adv. Mater. 24 5934Google Scholar

    [14]

    Ji W, Li L, Song W, Wang X, Zhao B, Ozaki Y 2019 Angew. Chem. Int. Ed. 58 14452Google Scholar

    [15]

    Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2008 J. Phys. Chem. C 112 20095Google Scholar

    [16]

    Jung N, Crowthe A C, Kim N, Kim P, Brus L 2010 ACS Nano 4 7005Google Scholar

    [17]

    Feng S, Santos M C D, Carvalho B R, et al. 2016 Sci. Adv. 2 1600322Google Scholar

    [18]

    Huang S, Ling X, Liang L, Song Y, Fang W, Zhang J, Kong J, Meunier V, Dresselhaus M S 2015 Nano Lett. 15 2892Google Scholar

    [19]

    Begliarbekov M, Sul O, Santanello J, Ai N, Zhang X, Yang E H, Strauf S 2011 Nano Lett. 11 1254Google Scholar

    [20]

    Papadakis D, Diamantopoulou A, Pantazopoulos P A, et al. 2019 Nanoscale 11 21542Google Scholar

    [21]

    Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2009 J. Raman Spectrosc. 40 2004Google Scholar

    [22]

    Yang L, Zhang Y, Ruan W, Zhao B, Xu W, Lombardi J R 2010 J. Raman Spectrosc. 41 721Google Scholar

    [23]

    Keshavarz M, Kassanos P, Tan B, Venkatakrishnan K 2020 Nanoscale Horiz. 5 294Google Scholar

    [24]

    Wang X, Shi W, Wang S, Zhao H, Lin J, Yang Z, Chen M, Guo L 2019 J. Am. Chem. Soc. 141 5856Google Scholar

    [25]

    Lin J, Ren W, Li A, Yao C, Chen T, Ma X, Wang X, Wu A 2020 ACS Appl. Mater. Interfaces 12 4204Google Scholar

    [26]

    Alessandri I 2013 J. Am. Chem. Soc. 135 5541Google Scholar

    [27]

    Qi D, Lu L, Wang L, Zhang J 2014 J. Am. Chem. Soc. 136 9886Google Scholar

    [28]

    Sarycheva A, Makaryan T, Maleski K, et al. 2017 J. Phys. Chem. C 121 19983Google Scholar

    [29]

    Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C 2020 Sci. China Mater. 63 794Google Scholar

    [30]

    Wen H, He T J, Xu C Y, Zuo J, Liu F C 1996 Mol. Phys. 88 281Google Scholar

    [31]

    Sun Z, Zhao B, Lombardi J R 2007 Appl. Phys. Lett. 91 221106Google Scholar

    [32]

    Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, Li S, Guo L 2017 Angew. Chem. Int. Ed. 56 9851Google Scholar

    [33]

    Zhao X, Deng M, Rao G, et al. 2018 Small 14 1802477Google Scholar

    [34]

    Li X, Shang Y, Lin J, Li A, Wang X, Li B, Guo L 2018 Adv. Funct. Mater. 28 1801868Google Scholar

    [35]

    Li X, Ren X, Zhang Y, Choy W C, Wei B 2015 Nanoscale 7 11291Google Scholar

    [36]

    Wang R C, Li C H 2011 Acta Mater. 59 822Google Scholar

    [37]

    Lin J, Hao W, Shang Y, Wang X, Qiu D, Ma G, Chen C, Li S, Guo L 2018 Small 14 1703274Google Scholar

    [38]

    Lin J, Shang Y, Li X, Yu J, Wang X, Guo L 2017 Adv. Mater. 29 10Google Scholar

    [39]

    Qiu C, Zhang L, Wang H, Jiang C 2012 J. Phys. Chem. Lett. 3 651Google Scholar

    [40]

    Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S 2013 Nanoscale 5 2784Google Scholar

    [41]

    Zhang Q, Li X, Yi W, Li W, Bai H, Liu J, Xi G 2017 Anal. Chem. 89 11765Google Scholar

    [42]

    Wu H, Zhou X, Li J, Li X, Li B, Fei W, Zhou J, Yin J, Guo W 2018 Small 14 1802276Google Scholar

    [43]

    Cao Y, Liang P, Dong Q, Wang D, Zhang, Tang L, Wang L, Jin S, Ni D, Yu Z 2019 Anal. Chem. 91 8683Google Scholar

    [44]

    Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993Google Scholar

    [45]

    Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, Zhao Z 2015 Nat. Commun. 6 7800Google Scholar

    [46]

    Fan X, Li M, Hao Q, Zhu M, Hou X, Huang H, Ma L, Schmidt O G, Qiu T 2019 Adv. Mater. Interfaces 6 1901133Google Scholar

    [47]

    Zhou C L, Sun L F, Zhang F Q, Gu C J, Zeng S W, Jiang T, Shen X, Ang D S, Zhou J 2019 ACS Appl. Mater. Interfaces 11 34091Google Scholar

    [48]

    Ye Y T, Bai H, Li M C, Tian Z, Du R F, Fan W H, Xi G C 2019 Adv. Mater. Technol. 4 1900282Google Scholar

    [49]

    Hou X Y, Luo X G, Fan X C, Peng Z H, Qiu T 2019 Phys. Chem. Chem. Phys. 21 2611Google Scholar

    [50]

    Wang X, Shi W, She G, Mu L 2011 J. Am. Chem. Soc. 133 16518Google Scholar

    [51]

    侯近龙, 贾祥非, 薛向欣, 陈雷, 宋微, 徐蔚青, 赵冰 2012 高等学校化学学报 33 139Google Scholar

    Hou J L, Jia X F, Xue X X, Chen L, Song W, Xu W Q, Zhao B 2012 Chem. J. Chin. Univ. 33 139Google Scholar

    [52]

    Miao P, Wu J, Du Y, Sun Y, Xu P 2018 J. Mater. Chem. C 6 10855Google Scholar

    [53]

    Miao P, Qin J K, Shen Y, Su H, Dai J, Song B, Du Y, Sun M, Zhang W, Wang H L, Xu C Y, Xu P 2018 Small 14 1704079Google Scholar

    [54]

    Gao M, Miao P, Han X, Sun C, Ma Y, Gao Y, Xu P 2019 Inorg. Chem. Front. 6 2318Google Scholar

    [55]

    Lee N, Schuck P J, Nico P S, Gilbert B 2015 J. Phys. Chem. Lett. 6 970Google Scholar

    [56]

    Fu X, Pan Y, Wang X, Lombardi J R 2011 J. Chem. Phys. 134 024707Google Scholar

    [57]

    Quagliano L G 2004 J. Am. Chem. Soc. 126 7393Google Scholar

    [58]

    Livingstone R, Zhou X, Tamargo M C, Lombardi J R, Quagliano L C, Jean M F 2010 J. Phys. Chem. C 114 17460Google Scholar

  • [1] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [3] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] 王昕, 康哲铭, 刘龙, 范贤光. 基于中值滤波和非均匀B样条的拉曼光谱基线校正算法. 物理学报, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [5] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [6] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [7] 梁源, 邢怀中, 晁明举, 梁二军. CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱. 物理学报, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [8] 陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密. HoVO4相变的高压拉曼光谱和理论计算研究. 物理学报, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [9] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [10] 臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨. 离子注入ZnO薄膜的拉曼光谱研究. 物理学报, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [11] 陈祥磊, 张杰, 杜淮江, 周先意, 叶邦角. 化合物半导体材料的正电子寿命计算. 物理学报, 2010, 59(1): 603-608. doi: 10.7498/aps.59.603
    [12] 段宝兴, 杨银堂. 利用Keating模型计算Si(1-x)Gex及非晶硅的拉曼频移. 物理学报, 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [13] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究. 物理学报, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [14] 赵文彬, 张冠军, 严 璋. 半导体闪络引起的材料表面破坏现象研究. 物理学报, 2008, 57(8): 5130-5137. doi: 10.7498/aps.57.5130
    [15] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [16] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [18] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [19] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
计量
  • 文章访问数:  13897
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 修回日期:  2020-06-23
  • 上网日期:  2020-10-10
  • 刊出日期:  2020-10-05

/

返回文章
返回