搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

论材料非晶形成中的焓与熵: 竞争亦或协同?

王利民 刘日平 田永君

引用本文:
Citation:

论材料非晶形成中的焓与熵: 竞争亦或协同?

王利民, 刘日平, 田永君

On glass formation thermodynamics: Enthalpy vs. Entropy

Wang Li-Min, Liu Ri-Ping, Tian Yong-Jun
PDF
HTML
导出引用
  • 液固Gibbs自由能差是决定材料非晶转变的热力学关键因素, 但该参量在预测非晶转变和指导非晶成分设计方面仍有一些基本问题有待解决. 其中, 一个关键问题是: 作为Gibbs能差的两个核心要素, 焓与熵, 二者在决定和控制非晶转变中关系并不明确. 基于课题组系列研究结果, 本文就焓与熵在材料非晶转变中的协同性与独立性问题进行了全面探讨, 发现二者在决定非晶形成上具有很强的相关性. 理论分析和实验测量相结合, 展示了材料熔化熵与熔点粘度、混合焓等多个非晶形成经典参量之间的内在关联, 证实熔化熵与材料非晶形成之间的密切关联; 并从多个角度证实材料低熔化熵有利于非晶形成, 纠正了传统上基于经典形核理论得出的高熔化熵有利于非晶形成的认识. 研究也发现, 决定非晶形成的关键动力学与热力学参量, 如粘度和混合焓, 均可通过熔化熵得到表达. 进而论证了熔化熵在评估非晶形成、指导非晶成分设计中的可靠性和有效性, 由此提出熔化熵可作为理解指导材料非晶形成的代表性热力学参量. 系列成果为发展非晶形成热力学、深入理解材料非晶形成提供了参考与思路.
    Glass formation thermodynamics usually concerns the liquid-crystal Gibbs free energy difference. But, in practice, its efficiency in predicting the occurrence of the glass transition of materials and guiding the composition design is quite quantitative. In particular, it remains to be clarified to understand the relationship between and the contributions to the two fundamental quantities of enthalpy and entropy involved herein. In this paper, we study the relation between the enthalpy and the entropy involved in glass formation of various materials, and find that they are strongly correlated with each other. Theoretical and experimental analyses indicate the intrinsic correlation of the entropy of fusion with other key parameters associated with glass formation like melting viscosity and enthalpy of mixing, which confirms the close relation between the entropy of fusion and glass formation. Close inspection finds that the low entropy of fusion benefits the glass formation. Owing to the fact that the two glass-formation key variables of viscosity and enthalpy can be addressed by the entropy of fusion, we propose that the entropy of fusion be able to serve as a representative thermodynamic quantity to understand the glass formation in materials. The reliability in understanding the glass formation in terms of entropy of fusion is further verified. The studies provide a new reference for developing the glass formation thermodynamics.
      通信作者: 王利民, limin_wang@ysu.edu.cn ; 刘日平, riping@ysu.edu.cn ; 田永君, fhcl@ysu.edu.cn
    • 基金项目: 国家自然科学基金创新研究群体科学基金(批准号: 51421091)、国家重点研发计划(批准号: 2018YFA0703602)、国家自然科学基金(批准号: 51801174)和河北省高层次人才资助项目(批准号: BJ2018021)资助的课题
      Corresponding author: Wang Li-Min, limin_wang@ysu.edu.cn ; Liu Ri-Ping, riping@ysu.edu.cn ; Tian Yong-Jun, fhcl@ysu.edu.cn
    • Funds: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51421091), the National Key R&D Program of China (Grant No. 2018YFA0703602), the National Natural Science Foundation of China (Grant No. 51801174), and the High-level Talents Funded Projects of Hebei Province, China (Grant No. BJ2018021)
    [1]

    Anderson P W 1995 Science 267 1615Google Scholar

    [2]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S 2000 J. Appl. Phys. 88 3113Google Scholar

    [3]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [4]

    Turnbull D 1969 Contemp. Phys. 10 473Google Scholar

    [5]

    Turnbull D, Cohen M H 1960 Modern Aspects of the Vitreous State (London: Butterworth)

    [6]

    Uhlmann D R 1977 J. Non-Cryst. Solids 25 42Google Scholar

    [7]

    Schmentzer J 2005 Nucleation Theory and Applications (New York: Wiley-VCH)

    [8]

    Kalikmanov V I 2013 Nucleation Theory (Netherlands: Springer)

    [9]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [10]

    Jiang Z, Hu X, Zhao X 1982 J. Non-Cryst. Solids 52 235Google Scholar

    [11]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342Google Scholar

    [12]

    Highmore R J, Greer A L 1989 Nature 339 363Google Scholar

    [13]

    Ottou Abe M T, Viciosa M T, Correia N T, Affouard F 2018 Phys. Chem. Chem. Phys. 20 29528Google Scholar

    [14]

    Atawa B, Correia N T, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A 2019 Phys. Chem. Chem. Phys. 21 702

    [15]

    Kauzmann W 1949 Chem. Rev. 43 219

    [16]

    Angell C A 1995 Science 267 1924Google Scholar

    [17]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200Google Scholar

    [18]

    Mukherjee S, Schroers J, Johnson W L, Rhim W K, 2005 Phys. Rev. Lett. 94 245501Google Scholar

    [19]

    Lu Z P, Ma D, Liu C T, Chang Y A 2007 Intermetallics 15 253Google Scholar

    [20]

    Yang B, Du Y, Liu Y 2009 Trans. Nonferrous Met. Soc. China 19 78Google Scholar

    [21]

    Chattopadhyay C, Satish Idury K S N, Bhatt J, Mondal K, Murty B S 2016 Mater. Sci. Technol. 32 380Google Scholar

    [22]

    Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671Google Scholar

    [23]

    Chen H S 1980 Rep. Prog. Phys. 43 353Google Scholar

    [24]

    Kim D, Lee B J, Kim N J 2004 Intermetallics 12 1103Google Scholar

    [25]

    Sun K H 1947 J. Am. Ceram. Soc. 30 277Google Scholar

    [26]

    Rawson H 1956 Proc. IV Intern. Congress on Glass (Paris: Impremenic Chaix) p62

    [27]

    Xia L, Li W H, Fang S S, Wei B C, Dong Y D 2006 J. Appl. Phys. 99 026103Google Scholar

    [28]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [29]

    Takeuchi A, Inoue A 2000 Mater. Trans., JIM 41 1372Google Scholar

    [30]

    Busch R, Liu W, Johnson W L 1998 J. Appl. Phys. 83 4134Google Scholar

    [31]

    Singh P K, Dubey K S 2010 J. Therm. Anal. Calorim. 100 347Google Scholar

    [32]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139Google Scholar

    [33]

    Perepezko J H 2004 Prog. Mater. Sci. 49 263Google Scholar

    [34]

    Fecht H J, Johnson W L 2004 Mater. Sci. Eng. A 375 2

    [35]

    Battezzati L 1994 Mater. Sci. Eng. A 178 43Google Scholar

    [36]

    Battezzati L, Castellero A, Rizzi P 2007 J. Non-Cryst. Solids 353 3318Google Scholar

    [37]

    Gallington L C, Bongiorno A 2010 J. Chem. Phys. 132 174707Google Scholar

    [38]

    Gutzow I, Schmelzer J W P, Petroff B 2008 J. Non-Cryst. Solids 354 311Google Scholar

    [39]

    Ji X, Pan Y 2007 J. Non-Cryst. Solids 353 2443Google Scholar

    [40]

    Fultz B 2010 Prog. Mater. Sci. 55 247Google Scholar

    [41]

    van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11Google Scholar

    [42]

    Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 NPJ Comput. Mater. 4 47Google Scholar

    [43]

    Ohsaka K, Trinh E H 1995 Appl. Phys. Lett. 66 3123Google Scholar

    [44]

    Goldstein M, 1969 J. Chem. Phys. 51 3728Google Scholar

    [45]

    Stillinger F H 1995 Science 267 1935Google Scholar

    [46]

    Angell C A 2005 Phil. Trans. R. Soc. A 363 415Google Scholar

    [47]

    Sastry S, Debenedetti P G, Stillinger F H 1998 Nature 393 554Google Scholar

    [48]

    Bhatt J, Wu J, Xia J H, Wang Q, Dong C, Murty B S 2007 Intermetallics 15 716Google Scholar

    [49]

    Ramakrishna Rao B, Gandhi A S, Vincent S, Bhatt J, Murty B S 2012 Trans. Indian Inst. Met. 65 559Google Scholar

    [50]

    Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841Google Scholar

    [51]

    Johnson W L, Na J H, Demetriou M D 2016 Nat. Commun. 7 1

    [52]

    Jiusti J, Zanotto E D, Cassar D R, Andreeta M R B 2020 J. Am. Ceram. Soc. 103 921Google Scholar

    [53]

    Minaev V S 1978 Amorphous Semiconductors-78 (Prague: AS ChSSR) p71

    [54]

    de Oliveira M F, Pereira F S, Bolfarini C, Kiminami C S, Botta W J 2009 Intermetallics 17 183Google Scholar

    [55]

    Benson S W 1947 J. Chem. Phys. 15 367Google Scholar

    [56]

    Myers R T 1979 J. Phys. Chem. 83 294Google Scholar

    [57]

    Wessel M D, Jurs P C 1995 J. Chem. Inf. Comput. Sci. 35 841Google Scholar

    [58]

    Wang L M, Richert R 2007 J. Phys. Chem. B. 111 3201Google Scholar

    [59]

    Turnbull D, Cohen M H 1958 J. Chem. Phys. 29 1049Google Scholar

    [60]

    郑兆勃 1979 金属学报 15 155

    Zheng Z B 1979 Acta. Metall. Sin. 15 155

    [61]

    Hrubý A 1972 J. Phys. B 22 1187

    [62]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [63]

    Song W X, Zhao S J 2015 J. Chem. Phys. 142 144504Google Scholar

    [64]

    Miedema A R, de Châtel P F, de Boer F R 1980 Phys. B+C 100 1Google Scholar

    [65]

    Basu J, Murty B S, Ranganathan S 2008 J. Alloys Compd. 465 163Google Scholar

    [66]

    Das N, Kulkarni U D, Pabi S K, Murty B S, Dey G K 2008 Defect Diffus. Forum 279 147Google Scholar

    [67]

    Bhatt J, Dey G K, Murty B S 2008 Metall. Mater. Trans. A 39 1543Google Scholar

    [68]

    Ray P K, Akinc M, Kramer M J 2008 22 nd Annu. Conf. Foss. Energy Mater (Pittsburgh) 2008 p474

    [69]

    Weeber A W 1987 J. Phys. F: Met. Phys. 17 809Google Scholar

    [70]

    Pan Y, Zeng Y, Jing L, Zhang L, Pi J 2014 Mater. Des. 55 773Google Scholar

    [71]

    Miracle D B 2006 Acta Mater. 54 4317Google Scholar

    [72]

    Egami T, Waseda Y 1984 J. Non-Cryst. Solids 64 113Google Scholar

    [73]

    Gargarella P, de Oliveira M F, Kiminami S, Pauly S, Kühn U, Bolfarini C, Botta W J, Eckert J 2011 J. Alloys Compd. 50 9

    [74]

    Hu Y C, Schroers J, Shattuck M D, O’Hern C S 2019 Phys. Rev. Mater. 3 085602Google Scholar

    [75]

    Greer A L 1993 Nature 366 30

    [76]

    Zhang W, Liaw P K, Zhang Y 2018 Sci. China Mater. 61 2Google Scholar

    [77]

    Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G, Lu Z 2018 Nature 563 546Google Scholar

    [78]

    Zhao L R, Li Z J, Gao Y Q, Bo H, Liu Y D, Wang L M 2016 Intermetallics 71 18Google Scholar

    [79]

    Gibbs J H, DiMarzio E A 1958 J. Chem. Phys. 28 373Google Scholar

    [80]

    Mansoori G A, Carnahan N F, Starling K E, Leland Jr T W 1971 J. Chem. Phys. 54 1523Google Scholar

    [81]

    Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810Google Scholar

    [82]

    Guo J, Bian X, Li X, Zhang C 2010 Intermetallics 18 933Google Scholar

    [83]

    Li X, Song K, Wu Y, Ji H, Wang L 2013 Mater. Lett. 107 17Google Scholar

    [84]

    Vincent S, Peshwe D R, Murty B S, Bhatt J 2011 J. Non-Cryst. Solids 357 3495Google Scholar

    [85]

    Wang L M, Richert R 2007 Phys. Rev. Lett. 99 185701Google Scholar

    [86]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [87]

    Stillinger F H, Debenedetti P G 1999 J. Phys. Chem. B 103 4052Google Scholar

    [88]

    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901Google Scholar

    [89]

    Louzguine-Luzgin D V, Inoue A 2007 J. Mater. Res. 22 1378Google Scholar

    [90]

    Uhlmann D R 1983 J. Am. Ceram. Soc. 66 95Google Scholar

    [91]

    Jackson K A 2002 Interface Sci. 10 159Google Scholar

    [92]

    Ediger M D, Harrowell P, Yu L 2008 J. Chem. Phys. 128 034709Google Scholar

    [93]

    Gutzow I, Schmelzer J 1995 The Vitreous State (Berlin-New York: Springer)

    [94]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620Google Scholar

    [95]

    Wang L M, Tian Y, Liu R, Wang W 2012 Appl. Phys. Lett. 100 261913Google Scholar

    [96]

    Senkov O N, Miracle D B, Mullens H M 2005 J. Appl. Phys. 97 103502Google Scholar

    [97]

    Turnbull D 1981 Metall. Trans. B 12 217Google Scholar

    [98]

    Li D, Herlach D M 1996 Phys. Rev. Lett. 77 1801Google Scholar

    [99]

    Wang Q, Wang L M, Ma M Z, Binder S, Volkmann T, Herlach D M, Wang J S, Xue Q G, Tian Y J, Liu R P 2011 Phys. Rev. B 83 014202Google Scholar

    [100]

    Hoffmann H J 2005 Phys. Chem. Glasses 46 570

    [101]

    Gao P, Tu W, Li P, Wang L M 2018 J. Alloys Compd. 736 12Google Scholar

    [102]

    Pelton A D, Degterov S A, Eriksson G, Robelin C, Dessureault Y 2000 Metall. Mater. Trans. B 31 651Google Scholar

    [103]

    Hillert M 2008 Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (London: Cambridge University Press)

    [104]

    Qian H 1998 J. Chem. Phys. 109 10015Google Scholar

    [105]

    Meyer W V, Neldel H 1937 Z. Tech. Phys. 18 588

    [106]

    Constable F H 1925 Proc. R. Soc. London, Ser. A 108 355Google Scholar

    [107]

    Exner O 1964 Collection Czechoslov. Chem. Commun. 29 1094Google Scholar

    [108]

    Cornish-Bowden A 2002 J. Biosci. 27 121Google Scholar

    [109]

    Barrie P J 2012 Phys. Chem. Chem. Phys. 14 327Google Scholar

    [110]

    Graziano G 2004 J. Chem. Phys. 120 4467Google Scholar

    [111]

    赖国华, 周仁贤, 韩晓祥, 郑小明 2005 化学通报 12 928Google Scholar

    Lai G H, Zhou R X, Han X X, Zheng X M 2005 Chem. Bull. 12 928Google Scholar

    [112]

    Galwey A K 1977 Adv. Catal. 26 247

    [113]

    Starikov E B, Nordén B 2007 J. Phys. Chem. B 111 14431Google Scholar

    [114]

    Ryu S, Kang K, Cai W 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5174Google Scholar

    [115]

    Sharp K 2001 Protein Sci. 10 661Google Scholar

    [116]

    Eyring H 1935 J. Chem. Phys. 3 107Google Scholar

    [117]

    Liu L, Guo Q X 2001 Chem. Rev. 101 673Google Scholar

    [118]

    Pan A, Biswas T, Rakshit A K, Moulik S P 2015 J. Phys. Chem. B 119 15876Google Scholar

    [119]

    Shimakawa K, Abdel-Wahab F 1997 Appl. Phys. Lett. 70 652Google Scholar

    [120]

    Song H W, Guo S R, Lu D Z, Xu Y, Wang Y L, Lin D L, Hu Z Q 2000 Scr. Mater. 42 917Google Scholar

    [121]

    Wang Y J, Ishii A, Ogata S 2013 Acta Mater. 61 3866Google Scholar

    [122]

    Wang Y J, Zhang M, Liu L, Ogata S, Dai L H 2015 Phys. Rev. B 92 174118Google Scholar

    [123]

    Lu J, Ravichandran G, Johnson W L 2003 Acta Mater. 51 3429Google Scholar

    [124]

    Wang L M, Tian Y J, Liu R P, Richert R 2008 J. Chem. Phys. 128 084503Google Scholar

    [125]

    Kubaschewski O, Evans A L, Alcock C B 1967 Metallurgical thermochemistry (New York: Pergamon Press) p427

    [126]

    Swalin R A, Arents J 1962 J. Electrochem. Soc. 109 308CGoogle Scholar

    [127]

    Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171Google Scholar

    [128]

    Greet R J, Magill J H 1967 J. Phys. Chem. 71 1746Google Scholar

    [129]

    Reiner M 1964 Phys. Today 17 62

    [130]

    Blackburn F R, Wang C Y, Ediger M D 1996 J. Phys. Chem. 100 18249Google Scholar

    [131]

    Senkov O N, Miracle D B 2003 J. Non-Cryst. Solids 317 34Google Scholar

    [132]

    Yang X, Liu R, Yang M, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003Google Scholar

    [133]

    Wei D, Yang J, Jiang M Q, Dai L H, Wang Y J, Dyre J C, Douglass I, Harrowell P 2019 J. Chem. Phys. 150 114502Google Scholar

    [134]

    Han D, Wei D, Yang J, Li H L, Jiang M Q, Wang Y J, Dai L H, Zaccone A 2020 Phys. Rev. B 101 014113Google Scholar

    [135]

    Nettleton R E, Green M S 1958 J. Chem. Phys. 29 1365Google Scholar

    [136]

    Mittal J, Errington J R, Truskett T M 2006 J. Chem. Phys. 125 076102Google Scholar

    [137]

    Tiwari G P, Juneja J M, Iijima Y 2004 J. Mater. Sci. 39 1535Google Scholar

    [138]

    Tiwari G P 1978 Met. Sci. Heat Treat. 12 317

    [139]

    Jackson K A 1969 Crystal Growth Kinetics and Morphology. In Kinetics of Reactions in Ionic Systems (Boston: Springer) p229

    [140]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816Google Scholar

    [141]

    Tallon J L 1980 Phys. Lett. A 76 139Google Scholar

    [142]

    Tallon J L 1989 Nature 342 658Google Scholar

    [143]

    Chen W, Wang Y, Qiang J, Dong C 2003 Acta Mater. 51 1899Google Scholar

    [144]

    Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar

    [145]

    Saini M K, Jin X, Wu T, Liu Y, Wang L M 2018 J. Chem. Phys. 148 124504Google Scholar

    [146]

    卢柯 1992 金属学报 2 8

    Lu K 1992 Acta Metall. Sin. 2 8

    [147]

    Wang L, Li Z, Chen Z, Zhao Y, Liu R, Tian Y 2010 J. Phys. Chem. B 114 12080Google Scholar

    [148]

    Zhang Y, Li P, Gao P, Tu W, Wang L M 2017 J. Mater. Sci. 52 2924Google Scholar

    [149]

    Kang H, Wang L M unpublished

    [150]

    Tu W, Li X, Chen Z, Liu Y D, Labardi M, Capaccioli S, Paluch M, Wang L M 2016 J. Chem. Phys. 144 174502Google Scholar

    [151]

    Wunderlich B 1960 J. Phys. Chem. 64 1052Google Scholar

    [152]

    Moynihan C T, Angell C A 2000 J. Non-Cryst. Solids 274 131Google Scholar

    [153]

    Takeda K, Yamamuro O, Tsukushi I, Matsuo T, Suga H 1999 J. Mol. Struct. 479 227Google Scholar

    [154]

    Mishra R K, Dubey K S 1997 J. Therm. Anal. 50 843Google Scholar

    [155]

    Chang S S, Bestul A B 1972 J. Chem. Phys. 56 503Google Scholar

    [156]

    Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505Google Scholar

    [157]

    Li P, Gao P, Liu Y, Wang L M 2017 J. Alloys Compd. 696 754Google Scholar

    [158]

    Ubbelohde A R 1978 The Molten State of Matter: Melting and Crystal Structure (Chichester: John Wiley & Sons)

    [159]

    Oriani R A 1951 J. Chem. Phys. 19 93Google Scholar

    [160]

    Martinez L M, Angell C A 2001 Nature 410 663Google Scholar

    [161]

    Lu Z P, Bei H, Liu C T 2007 Intermetallics 15 618Google Scholar

    [162]

    Battezzati L, Greer A L 1989 Acta Metall. 37 1791Google Scholar

    [163]

    Lide D R 2004 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press)

    [164]

    Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y 2003 Phys. Rev. Lett. 91 015502Google Scholar

    [165]

    Carter C B, Norton M G 2013 Ceramic Materials: Science and Engineering (New York: Springer-Verlag)

    [166]

    Kelton K F 1991 Solid State Phys. 45 75Google Scholar

    [167]

    Kelton K F, Greer A L 1988 Phys. Rev. B 38 10089Google Scholar

    [168]

    Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184Google Scholar

    [169]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar

    [170]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer)

    [171]

    Kolodziejczyk K, Paluch M, Grzybowska K, Grzybowski A, Wojnarowska Z, Hawelek L, Ziolo J D 2013 Mol. Pharmacol. 10 2270Google Scholar

    [172]

    Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 19780Google Scholar

    [173]

    Wu T, Jin X, Saini M K, Liu Y D, Ngai K L, Wang L M 2017 J. Chem. Phys. 147 134501Google Scholar

    [174]

    Sarjeant P T, Roy R 1968 Mater. Res. Bull. 3 265Google Scholar

    [175]

    Mukherjee S, Schroers J, Zhou Z, Johnson W L, Rhim W K 2004 Acta Mater. 52 3689Google Scholar

    [176]

    Li P F, Wang L M unpublished.

    [177]

    Bureau B, Boussard-Pledel C, Lucas P, Zhang X, Lucas J 2009 Molecules 14 4337Google Scholar

    [178]

    Zhang Y, Gong H, Li P, Tian Y, Wang L M 2017 Mater. Lett. 194 149Google Scholar

    [179]

    Zanotto E D, Cassar D R 2017 Sci. Rep. 7 1Google Scholar

    [180]

    翟玉春 2017 非平衡态热力学 (北京: 科学出版社)

    Zhai Y C, 2017 Non-Equilibrium Thermodynamics (Beijing: Science Press) (in Chinese)

    [181]

    Li Z, Pan S, Zhang S, Feng S, Li M, Liu R, Tian Y, Wang L M 2019 Intermetallics 109 97Google Scholar

    [182]

    Wang Y, Yao J, Li Y 2018 J. Mater. Sci. Technol. 34 605Google Scholar

  • 图 1  基于体系焓H或者体积V变化表达的非晶转变示意图. 1—3代表不同的冷速得到的非晶态

    Fig. 1.  Schematic of glass transition behaviors addressed by enthalpy or volume. Numbers of 1—3 define glassy states obtained at different quenching rates.

    图 2  非晶与液态的部分能量图景示意图

    Fig. 2.  Schematic diagram of partial energy landscape of a glass and liquid.

    图 3  四种二元金属合金体系在共晶成分上的混合熵[78]

    Fig. 3.  Entropies of mixing in four types of binary metallic alloys at their eutectic compositions[78].

    图 4  金属合金液固Gibbs自由能差在过冷区内温度关系[30,94], Tl为液相线温度

    Fig. 4.  Temperature dependence of the difference of liquid-crystal Gibbs free energies in supercooled liquid regions of metallic alloys. Tl is the liquidus temperature[30,94].

    图 5  具有正、负混合热金属二元共晶体系中的过剩熔化熵[101]

    Fig. 5.  Excess entropies of fusion in binary eutectic alloys showing positive and negative enthalpies of mixing[101].

    图 6  具有正、负混合热二元小分子共晶体系的过剩熔化熵. 左图为混合热测量曲线, 右图为共晶相图 (a), (b)、共晶点以及纯组元熔化熵(c), (d)和共晶成分过剩熔化熵(e), (f)[101]

    Fig. 6.  Excess entropies of fusion in binary molecular eutectics of positive and negative enthalpies of mixing. Experimental measurements of the enthalpy of mixing is shown in left panel. (a) and (b) in the right panels are the phase diagrams; (c) and (d) show the entropies of fusion of eutectics and pure components; (e) and (f) give the excess entropies of fusion of eutectics[101].

    图 7  基于准化学模型在1000 ℃下计算的AB二元体系的摩尔混合热与混合熵. 假设A与B配位数为2, 短程序ΔgA-B分别为定值0, –21, –42和–84 kJ/mol四种情况[102]

    Fig. 7.  Calculated enthalpies and entropies of mixing in a A-B binary system in terms of quasi-chemical model with the fixed coordination number of two but varied short-range ordering ΔgA-B of 0, –21, –42 and 84 kJ/mol[102].

    图 8  中间化合物Cu50Zr50在 (a) 玻璃态(I)和过(b)冷液态(II)弛豫激活动力学中的焓-熵补偿效应[122]

    Fig. 8.  Enthalpy-entropy compensation behaviors for the activation behaviors of the relaxation dynamics in the glassy (I) (a) and supercooled liquid (II) (b)states of intermetallic Cu50Zr50[122].

    图 9  单羟基醇分子体系中非晶转变温度Tg与沸点Tb之间的关系[58]

    Fig. 9.  Relationship between the glass transition temperature Tg and boiling temperature Tb of glass forming monoalcohols[58].

    图 10  简单二元相图(理想混合且固溶度为零)中液相线与熔化熵关系

    Fig. 10.  Dependence of the liquidus on entropy of fusion in hypothetical binary phase diagrams featured by the ideal mixing and negligible solid solubility.

    图 11  四个二元碲基窄带隙合金的非晶形成能力图和相图. 左图为SnTe分别与Bi2Te3 (a), Sb2Te3 (b), In2Te3(c)和Ga2Te3 (d)构成的二元体系不同组分熔体淬火样品的XRD图, 右图为相对应的二元相图, 显示固溶度的变化趋势[148]

    Fig. 11.  Phase diagrams and glass forming ability in four binary Tellurium-based alloys. Left panel shows the XRD patterns of the samples obtained by water-quenching in the SnTe alloys with Bi2Te3 (a), Sb2Te3 (b), In2Te3 (c) and Ga2Te3 (d). Binary phase diagrams are presented in the right panel showing the variation of solid solubility[148].

    图 12  金属合金与小分子非晶形成体系归一化熔化熵与熔点粘度关系[150], 实线表示数据趋势

    Fig. 12.  Dependence of the melting viscosity on entropy of fusion in metallic and molecular glass-formers. Solid line guides the eye[150].

    图 13  不同非晶形成体系的约化熔化熵与经典非晶形成参量Tg/Tm关系

    Fig. 13.  Dependence of the reduced glass transition Tg/Tm on entropy of fusion in various glass forming systems.

    图 14  金属与无机材料的归一化熔化熵. n为一个分子中的原子数

    Fig. 14.  Normalized entropies of fusion in various metallic and inorganic materials. The parameter of n defines the atomic number of a molecule.

    图 15  金属合金的熔化熵与非晶形成临界冷却速率的关系. 实验数据基于文献[95], 曲线由(19)式计算确定

    Fig. 15.  Dependence of the critical cooling rate of glass formation on entropy of fusion in metallic alloys. The data are obtained from Ref. 95 and, the solid curve is calculated in terms of equation (19).

    图 16  硫族化合物熔化熵与非晶形成临界冷却速率的关系. 实线是参考(19)式的拟合曲线

    Fig. 16.  Dependence of the critical cooling rate of glass formation on entropy of fusion in glass forming chalcogenides. The solid line is the fitting curve using equation (19).

  • [1]

    Anderson P W 1995 Science 267 1615Google Scholar

    [2]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S 2000 J. Appl. Phys. 88 3113Google Scholar

    [3]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [4]

    Turnbull D 1969 Contemp. Phys. 10 473Google Scholar

    [5]

    Turnbull D, Cohen M H 1960 Modern Aspects of the Vitreous State (London: Butterworth)

    [6]

    Uhlmann D R 1977 J. Non-Cryst. Solids 25 42Google Scholar

    [7]

    Schmentzer J 2005 Nucleation Theory and Applications (New York: Wiley-VCH)

    [8]

    Kalikmanov V I 2013 Nucleation Theory (Netherlands: Springer)

    [9]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [10]

    Jiang Z, Hu X, Zhao X 1982 J. Non-Cryst. Solids 52 235Google Scholar

    [11]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342Google Scholar

    [12]

    Highmore R J, Greer A L 1989 Nature 339 363Google Scholar

    [13]

    Ottou Abe M T, Viciosa M T, Correia N T, Affouard F 2018 Phys. Chem. Chem. Phys. 20 29528Google Scholar

    [14]

    Atawa B, Correia N T, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A 2019 Phys. Chem. Chem. Phys. 21 702

    [15]

    Kauzmann W 1949 Chem. Rev. 43 219

    [16]

    Angell C A 1995 Science 267 1924Google Scholar

    [17]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200Google Scholar

    [18]

    Mukherjee S, Schroers J, Johnson W L, Rhim W K, 2005 Phys. Rev. Lett. 94 245501Google Scholar

    [19]

    Lu Z P, Ma D, Liu C T, Chang Y A 2007 Intermetallics 15 253Google Scholar

    [20]

    Yang B, Du Y, Liu Y 2009 Trans. Nonferrous Met. Soc. China 19 78Google Scholar

    [21]

    Chattopadhyay C, Satish Idury K S N, Bhatt J, Mondal K, Murty B S 2016 Mater. Sci. Technol. 32 380Google Scholar

    [22]

    Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671Google Scholar

    [23]

    Chen H S 1980 Rep. Prog. Phys. 43 353Google Scholar

    [24]

    Kim D, Lee B J, Kim N J 2004 Intermetallics 12 1103Google Scholar

    [25]

    Sun K H 1947 J. Am. Ceram. Soc. 30 277Google Scholar

    [26]

    Rawson H 1956 Proc. IV Intern. Congress on Glass (Paris: Impremenic Chaix) p62

    [27]

    Xia L, Li W H, Fang S S, Wei B C, Dong Y D 2006 J. Appl. Phys. 99 026103Google Scholar

    [28]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [29]

    Takeuchi A, Inoue A 2000 Mater. Trans., JIM 41 1372Google Scholar

    [30]

    Busch R, Liu W, Johnson W L 1998 J. Appl. Phys. 83 4134Google Scholar

    [31]

    Singh P K, Dubey K S 2010 J. Therm. Anal. Calorim. 100 347Google Scholar

    [32]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139Google Scholar

    [33]

    Perepezko J H 2004 Prog. Mater. Sci. 49 263Google Scholar

    [34]

    Fecht H J, Johnson W L 2004 Mater. Sci. Eng. A 375 2

    [35]

    Battezzati L 1994 Mater. Sci. Eng. A 178 43Google Scholar

    [36]

    Battezzati L, Castellero A, Rizzi P 2007 J. Non-Cryst. Solids 353 3318Google Scholar

    [37]

    Gallington L C, Bongiorno A 2010 J. Chem. Phys. 132 174707Google Scholar

    [38]

    Gutzow I, Schmelzer J W P, Petroff B 2008 J. Non-Cryst. Solids 354 311Google Scholar

    [39]

    Ji X, Pan Y 2007 J. Non-Cryst. Solids 353 2443Google Scholar

    [40]

    Fultz B 2010 Prog. Mater. Sci. 55 247Google Scholar

    [41]

    van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11Google Scholar

    [42]

    Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 NPJ Comput. Mater. 4 47Google Scholar

    [43]

    Ohsaka K, Trinh E H 1995 Appl. Phys. Lett. 66 3123Google Scholar

    [44]

    Goldstein M, 1969 J. Chem. Phys. 51 3728Google Scholar

    [45]

    Stillinger F H 1995 Science 267 1935Google Scholar

    [46]

    Angell C A 2005 Phil. Trans. R. Soc. A 363 415Google Scholar

    [47]

    Sastry S, Debenedetti P G, Stillinger F H 1998 Nature 393 554Google Scholar

    [48]

    Bhatt J, Wu J, Xia J H, Wang Q, Dong C, Murty B S 2007 Intermetallics 15 716Google Scholar

    [49]

    Ramakrishna Rao B, Gandhi A S, Vincent S, Bhatt J, Murty B S 2012 Trans. Indian Inst. Met. 65 559Google Scholar

    [50]

    Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841Google Scholar

    [51]

    Johnson W L, Na J H, Demetriou M D 2016 Nat. Commun. 7 1

    [52]

    Jiusti J, Zanotto E D, Cassar D R, Andreeta M R B 2020 J. Am. Ceram. Soc. 103 921Google Scholar

    [53]

    Minaev V S 1978 Amorphous Semiconductors-78 (Prague: AS ChSSR) p71

    [54]

    de Oliveira M F, Pereira F S, Bolfarini C, Kiminami C S, Botta W J 2009 Intermetallics 17 183Google Scholar

    [55]

    Benson S W 1947 J. Chem. Phys. 15 367Google Scholar

    [56]

    Myers R T 1979 J. Phys. Chem. 83 294Google Scholar

    [57]

    Wessel M D, Jurs P C 1995 J. Chem. Inf. Comput. Sci. 35 841Google Scholar

    [58]

    Wang L M, Richert R 2007 J. Phys. Chem. B. 111 3201Google Scholar

    [59]

    Turnbull D, Cohen M H 1958 J. Chem. Phys. 29 1049Google Scholar

    [60]

    郑兆勃 1979 金属学报 15 155

    Zheng Z B 1979 Acta. Metall. Sin. 15 155

    [61]

    Hrubý A 1972 J. Phys. B 22 1187

    [62]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [63]

    Song W X, Zhao S J 2015 J. Chem. Phys. 142 144504Google Scholar

    [64]

    Miedema A R, de Châtel P F, de Boer F R 1980 Phys. B+C 100 1Google Scholar

    [65]

    Basu J, Murty B S, Ranganathan S 2008 J. Alloys Compd. 465 163Google Scholar

    [66]

    Das N, Kulkarni U D, Pabi S K, Murty B S, Dey G K 2008 Defect Diffus. Forum 279 147Google Scholar

    [67]

    Bhatt J, Dey G K, Murty B S 2008 Metall. Mater. Trans. A 39 1543Google Scholar

    [68]

    Ray P K, Akinc M, Kramer M J 2008 22 nd Annu. Conf. Foss. Energy Mater (Pittsburgh) 2008 p474

    [69]

    Weeber A W 1987 J. Phys. F: Met. Phys. 17 809Google Scholar

    [70]

    Pan Y, Zeng Y, Jing L, Zhang L, Pi J 2014 Mater. Des. 55 773Google Scholar

    [71]

    Miracle D B 2006 Acta Mater. 54 4317Google Scholar

    [72]

    Egami T, Waseda Y 1984 J. Non-Cryst. Solids 64 113Google Scholar

    [73]

    Gargarella P, de Oliveira M F, Kiminami S, Pauly S, Kühn U, Bolfarini C, Botta W J, Eckert J 2011 J. Alloys Compd. 50 9

    [74]

    Hu Y C, Schroers J, Shattuck M D, O’Hern C S 2019 Phys. Rev. Mater. 3 085602Google Scholar

    [75]

    Greer A L 1993 Nature 366 30

    [76]

    Zhang W, Liaw P K, Zhang Y 2018 Sci. China Mater. 61 2Google Scholar

    [77]

    Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G, Lu Z 2018 Nature 563 546Google Scholar

    [78]

    Zhao L R, Li Z J, Gao Y Q, Bo H, Liu Y D, Wang L M 2016 Intermetallics 71 18Google Scholar

    [79]

    Gibbs J H, DiMarzio E A 1958 J. Chem. Phys. 28 373Google Scholar

    [80]

    Mansoori G A, Carnahan N F, Starling K E, Leland Jr T W 1971 J. Chem. Phys. 54 1523Google Scholar

    [81]

    Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810Google Scholar

    [82]

    Guo J, Bian X, Li X, Zhang C 2010 Intermetallics 18 933Google Scholar

    [83]

    Li X, Song K, Wu Y, Ji H, Wang L 2013 Mater. Lett. 107 17Google Scholar

    [84]

    Vincent S, Peshwe D R, Murty B S, Bhatt J 2011 J. Non-Cryst. Solids 357 3495Google Scholar

    [85]

    Wang L M, Richert R 2007 Phys. Rev. Lett. 99 185701Google Scholar

    [86]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [87]

    Stillinger F H, Debenedetti P G 1999 J. Phys. Chem. B 103 4052Google Scholar

    [88]

    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901Google Scholar

    [89]

    Louzguine-Luzgin D V, Inoue A 2007 J. Mater. Res. 22 1378Google Scholar

    [90]

    Uhlmann D R 1983 J. Am. Ceram. Soc. 66 95Google Scholar

    [91]

    Jackson K A 2002 Interface Sci. 10 159Google Scholar

    [92]

    Ediger M D, Harrowell P, Yu L 2008 J. Chem. Phys. 128 034709Google Scholar

    [93]

    Gutzow I, Schmelzer J 1995 The Vitreous State (Berlin-New York: Springer)

    [94]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620Google Scholar

    [95]

    Wang L M, Tian Y, Liu R, Wang W 2012 Appl. Phys. Lett. 100 261913Google Scholar

    [96]

    Senkov O N, Miracle D B, Mullens H M 2005 J. Appl. Phys. 97 103502Google Scholar

    [97]

    Turnbull D 1981 Metall. Trans. B 12 217Google Scholar

    [98]

    Li D, Herlach D M 1996 Phys. Rev. Lett. 77 1801Google Scholar

    [99]

    Wang Q, Wang L M, Ma M Z, Binder S, Volkmann T, Herlach D M, Wang J S, Xue Q G, Tian Y J, Liu R P 2011 Phys. Rev. B 83 014202Google Scholar

    [100]

    Hoffmann H J 2005 Phys. Chem. Glasses 46 570

    [101]

    Gao P, Tu W, Li P, Wang L M 2018 J. Alloys Compd. 736 12Google Scholar

    [102]

    Pelton A D, Degterov S A, Eriksson G, Robelin C, Dessureault Y 2000 Metall. Mater. Trans. B 31 651Google Scholar

    [103]

    Hillert M 2008 Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (London: Cambridge University Press)

    [104]

    Qian H 1998 J. Chem. Phys. 109 10015Google Scholar

    [105]

    Meyer W V, Neldel H 1937 Z. Tech. Phys. 18 588

    [106]

    Constable F H 1925 Proc. R. Soc. London, Ser. A 108 355Google Scholar

    [107]

    Exner O 1964 Collection Czechoslov. Chem. Commun. 29 1094Google Scholar

    [108]

    Cornish-Bowden A 2002 J. Biosci. 27 121Google Scholar

    [109]

    Barrie P J 2012 Phys. Chem. Chem. Phys. 14 327Google Scholar

    [110]

    Graziano G 2004 J. Chem. Phys. 120 4467Google Scholar

    [111]

    赖国华, 周仁贤, 韩晓祥, 郑小明 2005 化学通报 12 928Google Scholar

    Lai G H, Zhou R X, Han X X, Zheng X M 2005 Chem. Bull. 12 928Google Scholar

    [112]

    Galwey A K 1977 Adv. Catal. 26 247

    [113]

    Starikov E B, Nordén B 2007 J. Phys. Chem. B 111 14431Google Scholar

    [114]

    Ryu S, Kang K, Cai W 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5174Google Scholar

    [115]

    Sharp K 2001 Protein Sci. 10 661Google Scholar

    [116]

    Eyring H 1935 J. Chem. Phys. 3 107Google Scholar

    [117]

    Liu L, Guo Q X 2001 Chem. Rev. 101 673Google Scholar

    [118]

    Pan A, Biswas T, Rakshit A K, Moulik S P 2015 J. Phys. Chem. B 119 15876Google Scholar

    [119]

    Shimakawa K, Abdel-Wahab F 1997 Appl. Phys. Lett. 70 652Google Scholar

    [120]

    Song H W, Guo S R, Lu D Z, Xu Y, Wang Y L, Lin D L, Hu Z Q 2000 Scr. Mater. 42 917Google Scholar

    [121]

    Wang Y J, Ishii A, Ogata S 2013 Acta Mater. 61 3866Google Scholar

    [122]

    Wang Y J, Zhang M, Liu L, Ogata S, Dai L H 2015 Phys. Rev. B 92 174118Google Scholar

    [123]

    Lu J, Ravichandran G, Johnson W L 2003 Acta Mater. 51 3429Google Scholar

    [124]

    Wang L M, Tian Y J, Liu R P, Richert R 2008 J. Chem. Phys. 128 084503Google Scholar

    [125]

    Kubaschewski O, Evans A L, Alcock C B 1967 Metallurgical thermochemistry (New York: Pergamon Press) p427

    [126]

    Swalin R A, Arents J 1962 J. Electrochem. Soc. 109 308CGoogle Scholar

    [127]

    Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171Google Scholar

    [128]

    Greet R J, Magill J H 1967 J. Phys. Chem. 71 1746Google Scholar

    [129]

    Reiner M 1964 Phys. Today 17 62

    [130]

    Blackburn F R, Wang C Y, Ediger M D 1996 J. Phys. Chem. 100 18249Google Scholar

    [131]

    Senkov O N, Miracle D B 2003 J. Non-Cryst. Solids 317 34Google Scholar

    [132]

    Yang X, Liu R, Yang M, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003Google Scholar

    [133]

    Wei D, Yang J, Jiang M Q, Dai L H, Wang Y J, Dyre J C, Douglass I, Harrowell P 2019 J. Chem. Phys. 150 114502Google Scholar

    [134]

    Han D, Wei D, Yang J, Li H L, Jiang M Q, Wang Y J, Dai L H, Zaccone A 2020 Phys. Rev. B 101 014113Google Scholar

    [135]

    Nettleton R E, Green M S 1958 J. Chem. Phys. 29 1365Google Scholar

    [136]

    Mittal J, Errington J R, Truskett T M 2006 J. Chem. Phys. 125 076102Google Scholar

    [137]

    Tiwari G P, Juneja J M, Iijima Y 2004 J. Mater. Sci. 39 1535Google Scholar

    [138]

    Tiwari G P 1978 Met. Sci. Heat Treat. 12 317

    [139]

    Jackson K A 1969 Crystal Growth Kinetics and Morphology. In Kinetics of Reactions in Ionic Systems (Boston: Springer) p229

    [140]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816Google Scholar

    [141]

    Tallon J L 1980 Phys. Lett. A 76 139Google Scholar

    [142]

    Tallon J L 1989 Nature 342 658Google Scholar

    [143]

    Chen W, Wang Y, Qiang J, Dong C 2003 Acta Mater. 51 1899Google Scholar

    [144]

    Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar

    [145]

    Saini M K, Jin X, Wu T, Liu Y, Wang L M 2018 J. Chem. Phys. 148 124504Google Scholar

    [146]

    卢柯 1992 金属学报 2 8

    Lu K 1992 Acta Metall. Sin. 2 8

    [147]

    Wang L, Li Z, Chen Z, Zhao Y, Liu R, Tian Y 2010 J. Phys. Chem. B 114 12080Google Scholar

    [148]

    Zhang Y, Li P, Gao P, Tu W, Wang L M 2017 J. Mater. Sci. 52 2924Google Scholar

    [149]

    Kang H, Wang L M unpublished

    [150]

    Tu W, Li X, Chen Z, Liu Y D, Labardi M, Capaccioli S, Paluch M, Wang L M 2016 J. Chem. Phys. 144 174502Google Scholar

    [151]

    Wunderlich B 1960 J. Phys. Chem. 64 1052Google Scholar

    [152]

    Moynihan C T, Angell C A 2000 J. Non-Cryst. Solids 274 131Google Scholar

    [153]

    Takeda K, Yamamuro O, Tsukushi I, Matsuo T, Suga H 1999 J. Mol. Struct. 479 227Google Scholar

    [154]

    Mishra R K, Dubey K S 1997 J. Therm. Anal. 50 843Google Scholar

    [155]

    Chang S S, Bestul A B 1972 J. Chem. Phys. 56 503Google Scholar

    [156]

    Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505Google Scholar

    [157]

    Li P, Gao P, Liu Y, Wang L M 2017 J. Alloys Compd. 696 754Google Scholar

    [158]

    Ubbelohde A R 1978 The Molten State of Matter: Melting and Crystal Structure (Chichester: John Wiley & Sons)

    [159]

    Oriani R A 1951 J. Chem. Phys. 19 93Google Scholar

    [160]

    Martinez L M, Angell C A 2001 Nature 410 663Google Scholar

    [161]

    Lu Z P, Bei H, Liu C T 2007 Intermetallics 15 618Google Scholar

    [162]

    Battezzati L, Greer A L 1989 Acta Metall. 37 1791Google Scholar

    [163]

    Lide D R 2004 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press)

    [164]

    Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y 2003 Phys. Rev. Lett. 91 015502Google Scholar

    [165]

    Carter C B, Norton M G 2013 Ceramic Materials: Science and Engineering (New York: Springer-Verlag)

    [166]

    Kelton K F 1991 Solid State Phys. 45 75Google Scholar

    [167]

    Kelton K F, Greer A L 1988 Phys. Rev. B 38 10089Google Scholar

    [168]

    Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184Google Scholar

    [169]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar

    [170]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer)

    [171]

    Kolodziejczyk K, Paluch M, Grzybowska K, Grzybowski A, Wojnarowska Z, Hawelek L, Ziolo J D 2013 Mol. Pharmacol. 10 2270Google Scholar

    [172]

    Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 19780Google Scholar

    [173]

    Wu T, Jin X, Saini M K, Liu Y D, Ngai K L, Wang L M 2017 J. Chem. Phys. 147 134501Google Scholar

    [174]

    Sarjeant P T, Roy R 1968 Mater. Res. Bull. 3 265Google Scholar

    [175]

    Mukherjee S, Schroers J, Zhou Z, Johnson W L, Rhim W K 2004 Acta Mater. 52 3689Google Scholar

    [176]

    Li P F, Wang L M unpublished.

    [177]

    Bureau B, Boussard-Pledel C, Lucas P, Zhang X, Lucas J 2009 Molecules 14 4337Google Scholar

    [178]

    Zhang Y, Gong H, Li P, Tian Y, Wang L M 2017 Mater. Lett. 194 149Google Scholar

    [179]

    Zanotto E D, Cassar D R 2017 Sci. Rep. 7 1Google Scholar

    [180]

    翟玉春 2017 非平衡态热力学 (北京: 科学出版社)

    Zhai Y C, 2017 Non-Equilibrium Thermodynamics (Beijing: Science Press) (in Chinese)

    [181]

    Li Z, Pan S, Zhang S, Feng S, Li M, Liu R, Tian Y, Wang L M 2019 Intermetallics 109 97Google Scholar

    [182]

    Wang Y, Yao J, Li Y 2018 J. Mater. Sci. Technol. 34 605Google Scholar

  • [1] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制. 物理学报, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [2] 武博文, 胡亮, 耿德路, 魏炳波. 液态Zr35Al23Ni22Gd20合金的亚稳相分离与双相非晶形成机理. 物理学报, 2023, 72(21): 216401. doi: 10.7498/aps.72.20231002
    [3] 孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火. B元素添加对FePBCCu合金非晶形成能力、磁性能和力学性能的影响. 物理学报, 2023, 72(2): 026101. doi: 10.7498/aps.72.20221553
    [4] 马爽, 郝玮晔, 王旭东, 张伟, 姚曼. 类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析. 物理学报, 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [5] 王子, 任捷. 周期驱动系统的非平衡热输运与热力学几何. 物理学报, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [6] 沈珏, 刘成周, 朱宁宁, 童一诺, 严晨成, 薛珂磊. 非对易施瓦西黑洞的热力学及其量子修正. 物理学报, 2019, 68(20): 200401. doi: 10.7498/aps.68.20191054
    [7] 金肖, 王利民. 非晶材料玻璃转变过程中记忆效应的热力学. 物理学报, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [8] 米尔阿里木江, 艾力, 买买提热夏提, 买买提, 亚森江, 吾甫尔. 非对易相空间中谐振子体系热力学性质的探讨. 物理学报, 2015, 64(14): 140201. doi: 10.7498/aps.64.140201
    [9] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [10] 张雅楠, 王有骏, 孔令体, 李金富. Y对Fe-Si-B 合金非晶形成能力及软磁性能的影响. 物理学报, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [11] 陈季香, 羌建兵, 王清, 董闯. 以最大原子密度定义合金相中的第一近邻团簇. 物理学报, 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [12] 张 辉, 张国英, 杨 爽, 吴 迪, 戚克振. Zr基大块非晶中添加元素对非晶形成能力及耐蚀性的影响. 物理学报, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [13] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [14] 王秀英, 陈 莹, 张宁玉, 赵丽萍, 庞岩涛, 王文魁. 压力对Zr46.75Ti8.25Cu7.5Ni10Be27.5大块非晶合金玻璃转变和晶化动力学的影响. 物理学报, 2007, 56(7): 4004-4008. doi: 10.7498/aps.56.4004
    [15] 方 祺, 王 庆, 赵哲龙, 董远达. Nb添加对Cu-Zr非晶合金玻璃转变和晶化动力学的影响. 物理学报, 2007, 56(3): 1292-1296. doi: 10.7498/aps.56.1292
    [16] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 大块非晶临界冷却速率的非等温转变计算模型. 物理学报, 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [17] 宋晓艳, 高金萍, 张久兴. 纳米多晶体的热力学函数及其在相变热力学中的应用. 物理学报, 2005, 54(3): 1313-1319. doi: 10.7498/aps.54.1313
    [18] 陈志浩, 刘兰俊, 张 博, 席 赟, 王 强, 祖方遒. Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质. 物理学报, 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
    [19] 汪卫华, 白海洋, 张云, 陈红, 王文魁. Ni-Si多层膜中固态非晶化反应的热力学与动力学过程. 物理学报, 1993, 42(9): 1499-1504. doi: 10.7498/aps.42.1499
    [20] 蒙如玲, 周萍, 赵忠贤, 郭树权, 李林. MoxGe1-x,MoxSi1-x薄膜的非晶形成成份及超导转变温度. 物理学报, 1984, 33(5): 714-717. doi: 10.7498/aps.33.714
计量
  • 文章访问数:  12775
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-12
  • 修回日期:  2020-06-16
  • 上网日期:  2020-09-30
  • 刊出日期:  2020-10-05

/

返回文章
返回