搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B元素添加对FePBCCu合金非晶形成能力、磁性能和力学性能的影响

孙吉 沈鹏飞 尚其忠 张鹏雁 刘莉 李明瑞 侯龙 李维火

引用本文:
Citation:

B元素添加对FePBCCu合金非晶形成能力、磁性能和力学性能的影响

孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火

Effects of adding B element on amorphous forming ability, magnetic properties, and mechanical properties of FePBCCu alloy

Sun Ji, Shen Peng-Fei, Shang Qi-Zhong, Zhang Peng-Yan, Liu Li, Li Ming-Rui, Hou Long, Li Wei-Huo
PDF
HTML
导出引用
  • 铁基非晶合金因其低矫顽力、高磁导率和低铁耗等被广泛应用于变压器、电抗器等电力电子领域, 然而, 较低的饱和磁感值限制了其进一步应用. 铁含量增大可有效提高合金的饱和磁感, 但相应非磁性元素含量的降低又将引起合金非晶形成能力的下降, 导致后续纳米晶带材的软磁性能及弯折韧性的恶化. 针对上述问题, 文章基于金属-类金属间的杂化作用, 通过原子百分比为7%的B替代P, 利用单辊甩带法制备了厚度约为25 μm的FePBCCu非晶薄带, 并研究了B添加对薄带非晶形成能力、磁性能和力学性能的影响. 热动力学行为揭示出小原子B添加能够降低合金结构的异质性, 有效提高非晶基体的热稳定性; 熔化与凝固曲线表明B元素能够促使合金系接近共晶成分且具有较大的过冷度. 因此合金的非晶形成能力显著提高, 其临界厚度从基体的约21 μm 提高到约30 μm. B添加促使合金系磁性原子有效磁矩的增大, 导致非晶薄带的饱和磁感值增大. 纳米压痕实验结果表明, B添加合金的约化模量值较大且在一个较小范围内波动, 这与合金的结构均匀性密切相关.
    Fe-based amorphous alloys are widely used in power electronics fields such as transformers and reactors due to their low coercivity, high permeability and low loss. However, the relatively low saturation magnetization (Bs) limits their further applications. Generally speaking, the adjustable magnetic Fe content as an effective strategy can ameliorate the magnetic properties, and the higher the Fe content, the higher the obtained Bs is, but the decrease of the corresponding non-magnetic element content will result in the drop of the ability of alloys to form amorphous phase, leading to the deterioration of the magnetic softness and bending ductility of nanocrystalline alloys. To address this critical issue, in this work, based on the metal-metalloid hybridization, the FePBCCu amorphous ribbons, each with a thickness of ~25 μm, are prepared by the single-roller melt spinning method via 7% (atomic percent) B substitution for P, and the effects of B element addition on the ability to form amorphous phase, magnetic properties and mechanical properties of ribbons are investigated. Thermodynamic behavior shows that the addition of small quantities of B element can reduce the structural heterogeneity of alloy and the crystallization driving force as well, thus effectively improving the thermal stability of the amorphous matrix. The melting and solidification curves show that the addition of B can promote alloy to approach to the eutectic composition, and there is a large degree of undercooling. As a result, the critical thickness of ribbons increases from ~21 μm for B-free alloy to ~30 μm for B-added alloy due to the micro-alloying effect. The addition of B increases the effective magnetic moment of magnetic atoms in alloy, resulting in the increase of the saturation magnetization. Furthermore, the results of nanoindentation tests show that the modulus value of the B-added alloy decreases greatlyr and fluctuates in a smaller range than that of the B-free alloy, which is closely associated with the structural uniformity of the alloy.
      通信作者: 刘莉, 18855579760@163.com ; 侯龙, longhou@ahut.edu.cn
    • 基金项目: 安徽省自然科学基金青年项目(批准号: 2208085QE121)、安徽省高等学校自然科学研究项目(批准号: KJ2020A0225, KJ2020A0272)、江苏省基础研究计划(批准号: BK20201282)和先进金属材料绿色制备与表面技术教育部重点实验室开放基金(批准号: GFST2020KF05)资助的课题
      Corresponding author: Liu Li, 18855579760@163.com ; Hou Long, longhou@ahut.edu.cn
    • Funds: Project supported by the Anhui Provincial Natural Science Foundation, China (Grant No. 2208085QE121), the University Natural Science Research Project of Anhui Province, China (Grant Nos. KJ2020A0225, KJ2020A0272), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20201282), and the Open Project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, China (Grant No. GFST2020KF05).
    [1]

    Inoue A, Shen B L, Chang C T 2004 Acta Mater. 52 4093Google Scholar

    [2]

    Xu D D, Zhou B L, Wang Q Q, Zhou J, Yang W M, Yuan C C, Xue L, Fan X D, Ma L Q, Shen B L 2018 Corros. Sci. 138 20Google Scholar

    [3]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [4]

    McHenry M E, Willard M A, Laughlin D E 1999 Prog. Mater. Sci. 44 291Google Scholar

    [5]

    Wang A D, Zhao C L, He A N, Men H, Chang C T, Wang X M 2016 J. Alloy. Compd. 656 729Google Scholar

    [6]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [7]

    McHenry M E, Laughlin D E 2014 hysical Metallurgy (5th Ed.) (Elsevier) p1881

    [8]

    Hou L, Fan X D, Wang Q Q, Yang W M, Shen B L 2019 J. Mater. Sci. Technol. 35 1655Google Scholar

    [9]

    Meng S Y, Ling H B, Li Q, Zhang J 2014 Scr. Mater. 81 24Google Scholar

    [10]

    Wang C J, He A N, Wang A D, Pang J, Ling X, Li Q, Chang C, Qiu K, Wang X 2017 Intermetallics 84 142Google Scholar

    [11]

    Mizoguchi T 1976 AIP Conf. Proc. 34 286

    [12]

    Xu J, Yang Y Z, Li W, Xie Z, Chen X 2017 Mater. Res. Bull. 97 452

    [13]

    Shi L X, Qin X L, Yao K F 2020 Prog. Nat. Sci-Mater. 30 208Google Scholar

    [14]

    Zuo M Q, Meng S Y, Li Q, Li H X, Chang C T, Sun Y F 2017 Intermetallics 83 83Google Scholar

    [15]

    Jin Y L, Fan X D, He M, Liu X C, Shen B L 2012 Sci. China Technol. Sci. 55 3419Google Scholar

    [16]

    Wang Q Q, Chen M X, Lin P H, Cui Z Q, Chu C L, Shen B L 2018 J. Mater. Chem. A 6 10686Google Scholar

    [17]

    Wang Q Q, Yun L, Chen M X, Xu D D, Cui Z Q, Zeng Q S, Lin P H, Chu C L, Shen B L 2019 ACS Appl. Nano Mater. 2 214Google Scholar

    [18]

    Jafari S, Beitollahi A, Eftekhari Yekta B, Ohkubo T, Budinsky V, Marsilius M, Herzer G, Hono K 2016 J. Alloy. Compd. 674 136Google Scholar

    [19]

    Fan X D, Zhang T, Jiang M F, Yang W M, Shen B L 2019 J. Non-Cryst. Solid. 503 36

    [20]

    Hou L, Yang W M, Luo Q, Fan X D, Liu H S, Shen B L 2020 J. Non-Cryst. Solid. 530 119800Google Scholar

    [21]

    Li Y L, Dou Z X, Chen X M, Lv K, Li F S, Hui X D 2020 Mater. Sci. Eng. B 262 114740Google Scholar

    [22]

    Hono K, Ping D H, Ohnuma M, Onodera H 1999 Acta Mater. 47 997Google Scholar

    [23]

    Hu F, Yuan C C, Luo Q, Yang W M, Shen B L 2019 J. Alloy. Compd. 807 151675Google Scholar

    [24]

    Ohnuma M, Ping D H, Abe T, Onodera H, Hono K, Yoshizawa Y 2003 J. Appl. Phys. 93 9186Google Scholar

    [25]

    Yang W M, Li J W, Liu H S, Dun C C, Zhang H L, Huo J T, Xue L, Zhao Y C, Shen B L, Dou L M, Inoue A 2014 Intermetallics 49 52Google Scholar

    [26]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679Google Scholar

    [27]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [28]

    耿遥祥, 王英敏 2020 金属学报 56 1558Google Scholar

    Geng Y X, Wang Y M 2020 Acta Metall. Sin. 56 1558Google Scholar

    [29]

    Fan X D, Jiang M F, Zhang T, Hou L, Wang C X, Shen B L 2020 J. Non-Cryst. Solid. 533 119941Google Scholar

    [30]

    Hou L, Li M R, Jiang C, Fan X D, Luo Q, Chen S S, Song P D, Li W H 2021 J. Alloy. Compd. 853 157071Google Scholar

    [31]

    严密, 彭晓领 2011 磁学基础与磁性材料 (杭州: 浙江大学出版社)

    Yan M, Peng X L 2011 Fundamentals of Magnetism and Magnetic Materials (Hangzhou: Zhejiang University Press) (in Chinese)

    [32]

    Zhang J H, Chang C T, Wang A D Shen B L 2012 J. Non-Crystal. Solids 358 1443Google Scholar

    [33]

    Wang F, Inoue A, Han Y, Kong F L, Zhu S L, Shalaan E, Al-Marzouki F, Obaid A 2017 J. Alloy. Compd. 723 376Google Scholar

    [34]

    Sun B R, Xin S W, Shen T D 2018 J. Mag. Magn. Mater. 466 130Google Scholar

    [35]

    Sarac B, Ivanov Y P, Chuvilin A, Schoberl T, Stoica M, Zhang Z L, Eckert J 2018 Nat. Commun. 9 1333Google Scholar

    [36]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan, M X, Wang W H 2007 Science 315 1385Google Scholar

  • 图 1  纳米压痕实验中的压痕分布示意图

    Fig. 1.  Schematic diagram of indentation distribution in nanoindentation tests.

    图 2  淬态Fe78.8P14–xBxC6Cu1.2非晶薄带的自由面形貌及局部区域对应的元素分布

    Fig. 2.  Surface morphologies of free-side of as-quenched Fe78.8P14–xBxC6Cu1.2 amorphous ribbons and the elemental distribution of local region.

    图 3  淬态Fe78.8P14–xBxC6Cu1.2非晶薄带的自由面XRD图谱

    Fig. 3.  XRD patterns of free-side of as-quenched Fe78.8P14–xBxC6Cu1.2 amorphous ribbons

    图 4  淬态Fe78.8P14–xBxC6Cu1.2非晶薄带的明场TEM图像 (a) x = 0; (b) (a)的局部放大图; (c) x = 7; (d) (c)的局部放大图. 插图分别为对应合金的SAED花样

    Fig. 4.  Bright-field TEM images of as-quenched Fe78.8P14–xBxC6Cu1.2 amorphous ribbons: (a) x = 0, (b) locally enlarged image in (a); (c) x = 7; (d) locally enlarged image in (c). The insets correspond to the SAED patterns, respectively.

    图 5  淬态/退火态Fe78.8P14–xBxC6Cu1.2非晶薄带的DSC曲线, 插图为未添加B合金结构弛豫前后的局部放大图

    Fig. 5.  DSC curves of as-quenched/annealed Fe78.8P14–xBxC6Cu1.2 amorphous ribbons. The inset is the locally enlarged curves of B-free alloy before and after relaxation.

    图 6  淬态Fe78.8P14C6Cu1.2非晶薄带的高角环形暗场(HAADF-STEM)图及对应Fe, Cu和P的元素分布图

    Fig. 6.  HAADF image of as-quenched Fe78.8P14C6Cu1.2 amorphous ribbons, and the elemental mappings of Fe, Cu and P elements, respectively.

    图 7  淬态Fe78.8P7B7C6Cu1.2非晶薄带的高角环形暗场(HAADF-STEM)图及对应Fe, Cu和P的元素分布图

    Fig. 7.  HAADF image of as-quenched Fe78.8P7B7C6Cu1.2 amorphous ribbons, and the elemental mappings of Fe, Cu and P elements, respectively.

    图 8  淬态Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%)非晶薄带的熔化与凝固DSC曲线

    Fig. 8.  The melting and cooling DSC curves of as-quenched Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%) amorphous ribbons.

    图 9  不同升温速率下的淬态Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%)非晶薄带的DSC曲线 (a) x = 0; (b) x = 7. 插图分别为ln(T 2/β)与1000/T的线性关系

    Fig. 9.  The DSC curves of as-quenched Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%) amorphous ribbons under the different heating rates: (a) x = 0; (b) x = 7. The insets correspond to the relationship of ln(T 2/β) and 1000/T, respectively.

    图 10  淬态Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%)非晶薄带的磁滞回线, 插图(左上)为局部放大的磁滞回线, 插图(右下)为磁性Fe与类金属B, P原子间的电子杂化机制图示

    Fig. 10.  Hysteresis loops of as-quenched Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%) amorphous ribbons. The inset (top-left) is the locally enlarged hysteresis loops, and the inset (bottom-right) is the mechanism of electron hybridization between magnetic Fe and metalloid B, P atoms.

    图 11  淬态Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%)非晶薄带的纳米压痕实验 (a), (b) B0和B7合金的载荷-位移曲线; (c), (d) 合金的约化模量与压入深度值; (e), (f)合金的硬度变化值

    Fig. 11.  The nanoindentation tests of as-quenched Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%) amorphous ribbons: (a) , (b) The load-displacement curves of B0 and B7 alloys, respectively; (c), (d) the reduced modulus and indentation depth of alloys, respectively; (e), (f) the variations in hardness of alloys, respectively

  • [1]

    Inoue A, Shen B L, Chang C T 2004 Acta Mater. 52 4093Google Scholar

    [2]

    Xu D D, Zhou B L, Wang Q Q, Zhou J, Yang W M, Yuan C C, Xue L, Fan X D, Ma L Q, Shen B L 2018 Corros. Sci. 138 20Google Scholar

    [3]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [4]

    McHenry M E, Willard M A, Laughlin D E 1999 Prog. Mater. Sci. 44 291Google Scholar

    [5]

    Wang A D, Zhao C L, He A N, Men H, Chang C T, Wang X M 2016 J. Alloy. Compd. 656 729Google Scholar

    [6]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [7]

    McHenry M E, Laughlin D E 2014 hysical Metallurgy (5th Ed.) (Elsevier) p1881

    [8]

    Hou L, Fan X D, Wang Q Q, Yang W M, Shen B L 2019 J. Mater. Sci. Technol. 35 1655Google Scholar

    [9]

    Meng S Y, Ling H B, Li Q, Zhang J 2014 Scr. Mater. 81 24Google Scholar

    [10]

    Wang C J, He A N, Wang A D, Pang J, Ling X, Li Q, Chang C, Qiu K, Wang X 2017 Intermetallics 84 142Google Scholar

    [11]

    Mizoguchi T 1976 AIP Conf. Proc. 34 286

    [12]

    Xu J, Yang Y Z, Li W, Xie Z, Chen X 2017 Mater. Res. Bull. 97 452

    [13]

    Shi L X, Qin X L, Yao K F 2020 Prog. Nat. Sci-Mater. 30 208Google Scholar

    [14]

    Zuo M Q, Meng S Y, Li Q, Li H X, Chang C T, Sun Y F 2017 Intermetallics 83 83Google Scholar

    [15]

    Jin Y L, Fan X D, He M, Liu X C, Shen B L 2012 Sci. China Technol. Sci. 55 3419Google Scholar

    [16]

    Wang Q Q, Chen M X, Lin P H, Cui Z Q, Chu C L, Shen B L 2018 J. Mater. Chem. A 6 10686Google Scholar

    [17]

    Wang Q Q, Yun L, Chen M X, Xu D D, Cui Z Q, Zeng Q S, Lin P H, Chu C L, Shen B L 2019 ACS Appl. Nano Mater. 2 214Google Scholar

    [18]

    Jafari S, Beitollahi A, Eftekhari Yekta B, Ohkubo T, Budinsky V, Marsilius M, Herzer G, Hono K 2016 J. Alloy. Compd. 674 136Google Scholar

    [19]

    Fan X D, Zhang T, Jiang M F, Yang W M, Shen B L 2019 J. Non-Cryst. Solid. 503 36

    [20]

    Hou L, Yang W M, Luo Q, Fan X D, Liu H S, Shen B L 2020 J. Non-Cryst. Solid. 530 119800Google Scholar

    [21]

    Li Y L, Dou Z X, Chen X M, Lv K, Li F S, Hui X D 2020 Mater. Sci. Eng. B 262 114740Google Scholar

    [22]

    Hono K, Ping D H, Ohnuma M, Onodera H 1999 Acta Mater. 47 997Google Scholar

    [23]

    Hu F, Yuan C C, Luo Q, Yang W M, Shen B L 2019 J. Alloy. Compd. 807 151675Google Scholar

    [24]

    Ohnuma M, Ping D H, Abe T, Onodera H, Hono K, Yoshizawa Y 2003 J. Appl. Phys. 93 9186Google Scholar

    [25]

    Yang W M, Li J W, Liu H S, Dun C C, Zhang H L, Huo J T, Xue L, Zhao Y C, Shen B L, Dou L M, Inoue A 2014 Intermetallics 49 52Google Scholar

    [26]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679Google Scholar

    [27]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [28]

    耿遥祥, 王英敏 2020 金属学报 56 1558Google Scholar

    Geng Y X, Wang Y M 2020 Acta Metall. Sin. 56 1558Google Scholar

    [29]

    Fan X D, Jiang M F, Zhang T, Hou L, Wang C X, Shen B L 2020 J. Non-Cryst. Solid. 533 119941Google Scholar

    [30]

    Hou L, Li M R, Jiang C, Fan X D, Luo Q, Chen S S, Song P D, Li W H 2021 J. Alloy. Compd. 853 157071Google Scholar

    [31]

    严密, 彭晓领 2011 磁学基础与磁性材料 (杭州: 浙江大学出版社)

    Yan M, Peng X L 2011 Fundamentals of Magnetism and Magnetic Materials (Hangzhou: Zhejiang University Press) (in Chinese)

    [32]

    Zhang J H, Chang C T, Wang A D Shen B L 2012 J. Non-Crystal. Solids 358 1443Google Scholar

    [33]

    Wang F, Inoue A, Han Y, Kong F L, Zhu S L, Shalaan E, Al-Marzouki F, Obaid A 2017 J. Alloy. Compd. 723 376Google Scholar

    [34]

    Sun B R, Xin S W, Shen T D 2018 J. Mag. Magn. Mater. 466 130Google Scholar

    [35]

    Sarac B, Ivanov Y P, Chuvilin A, Schoberl T, Stoica M, Zhang Z L, Eckert J 2018 Nat. Commun. 9 1333Google Scholar

    [36]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan, M X, Wang W H 2007 Science 315 1385Google Scholar

  • [1] 余秀冬, 刘海顺, 薛琳, 张响, 杨卫明. 铁基非晶条带催化降解性能的退火晶化调控机理. 物理学报, 2024, 73(9): 098801. doi: 10.7498/aps.73.20240249
    [2] 马爽, 郝玮晔, 王旭东, 张伟, 姚曼. 类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析. 物理学报, 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [3] 王利民, 刘日平, 田永君. 论材料非晶形成中的焓与熵: 竞争亦或协同?. 物理学报, 2020, 69(19): 196401. doi: 10.7498/aps.69.20200707
    [4] 姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽. 铁基软磁非晶/纳米晶合金研究进展及应用前景. 物理学报, 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [5] 李蕊轩, 张勇. 熵在非晶材料合成中的作用. 物理学报, 2017, 66(17): 177101. doi: 10.7498/aps.66.177101
    [6] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平. 块体非晶合金的韧塑化. 物理学报, 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [7] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [8] 张雅楠, 王有骏, 孔令体, 李金富. Y对Fe-Si-B 合金非晶形成能力及软磁性能的影响. 物理学报, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [9] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [10] 张 辉, 张国英, 杨 爽, 吴 迪, 戚克振. Zr基大块非晶中添加元素对非晶形成能力及耐蚀性的影响. 物理学报, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [11] 施方也, 方允樟, 孙怀君, 郑金菊, 林根金, 吴锋民. 应力退火Fe基纳米晶薄带横向磁各向异性的介观结构研究. 物理学报, 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [12] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 基于成分连续变化计算黏度的合金系临界冷速模型. 物理学报, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [13] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 大块非晶临界冷却速率的非等温转变计算模型. 物理学报, 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [14] 赵鹤云, 阚家德, 柳清菊, 刘佐权. 几种铁基非晶合金激波诱导晶化中的若干奇异物理效应研究. 物理学报, 2005, 54(4): 1711-1718. doi: 10.7498/aps.54.1711
    [15] 何正明, 卢国荣, 张道元, 徐云华, 金建辉. FeCrZr非晶合金带的铁磁共振研究. 物理学报, 1993, 42(6): 1006-1011. doi: 10.7498/aps.42.1006
    [16] 何正明, 梁任又, 侯碧辉, 徐云华, 卢国荣, 罗有泉. FeCrB非晶合金带铁磁共振研究. 物理学报, 1991, 40(1): 137-141. doi: 10.7498/aps.40.137
    [17] 王根苗, 陈慧余, 汪卫华, 董远达. 机械合金化与FexAl100-x非晶态粉末的形成能力. 物理学报, 1990, 39(9): 1413-1417. doi: 10.7498/aps.39.1413
    [18] 何正明, 赵妙余, 张玲芬, 汪晓光. 铁基非晶合金磁致伸缩的温度效应. 物理学报, 1990, 39(4): 656-660. doi: 10.7498/aps.39.656
    [19] 车广灿, 沈保根, 赵见高, 詹文山, 梁敬魁. 组份对铁基非晶合金晶化温度的影响. 物理学报, 1987, 36(4): 483-489. doi: 10.7498/aps.36.483
    [20] 蒙如玲, 周萍, 赵忠贤, 郭树权, 李林. MoxGe1-x,MoxSi1-x薄膜的非晶形成成份及超导转变温度. 物理学报, 1984, 33(5): 714-717. doi: 10.7498/aps.33.714
计量
  • 文章访问数:  2987
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2022-10-22
  • 上网日期:  2022-11-01
  • 刊出日期:  2023-01-20

/

返回文章
返回