搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析

马爽 郝玮晔 王旭东 张伟 姚曼

引用本文:
Citation:

类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析

马爽, 郝玮晔, 王旭东, 张伟, 姚曼

Mechanism analysis of metalloid elements affecting amorphous forming ability and magnetic properties of Co-Y-B alloy

Ma Shuang, Hao Wei-Ye, Wang Xu-Dong, Zhang Wei, Yao Man
PDF
HTML
导出引用
  • 本文采用第一性原理分子动力学(ab initio molecular dynamics, AIMD)方法模拟了Co72Y3B15M10 (M = B, C, Si, P) 合金形成非晶的过程, 探究添加类金属元素C, Si, P对Co基Co-Y-B合金非晶形成能力(glass-formingability, GFA)和磁性能的影响, 着重从原子层面分析了局域原子结构与性能的关联. 计算的局域原子结构表征参数有对分布函数、配位数、化学短程序、Voronoi多面体指数、局域五次对称性和均方位移. 结果表明, 4种合金不同的局域原子结构特征造成其GFA的差异. Co72Y3B15C10和Co72Y3B15P10合金中棱柱结构的含量较高, B/C-C和B/P-P原子间的溶质分离性较弱, 过冷态时(1100 K)原子扩散能力较强, 不利于提高合金的GFA. Co72Y3B15Si10合金中畸变二十面体结构的含量较高, Co-Si原子间吸引力较强, B/Si-Si原子间具有较好的分离性, 过冷态时原子的扩散能力较低, 有利于提高合金的GFA. 因此, 添加Si元素有助于提高合金的GFA, 而C和P元素的添加会降低GFA, 且C元素对GFA的削弱作用更为明显. 4种合金的GFA按Co72Y3B15Si10 > Co72Y3B25 > Co72Y3B15P10 > Co72Y3B15C10的顺序依次降低. 添加C, Si, P元素使体系的总磁矩均有所下降, 按照Co72Y3B25 > Co72Y3B15Si10 > Co72Y3B15C10 > Co72Y3B15P10的顺序依次递减. Co-Si原子间较强的p-d轨道杂化作用增强了磁交换耦合作用, 导致添加Si元素对总磁矩的削弱作用较小.
    Co-based metallic glass (MG) is a new class of soft magnetic material and has promising applications in high-frequency fields due to its high magnetic permeability and low coercivity. However, this kind of MG has poor glass-formation ability (GFA) and relatively low saturated magnetic flux density, so its application scope is limited. The atomic size of metalloid element M (B, C, Si, and P) is small, which can easily enter into the gap between atoms, and there is a relatively large negative enthalpy of mixing between metalloid element and metal element. Therefore, alloying with metalloid element M is an effective method to improve the GFA while maintaining superior soft magnetic properties for Co-based MG. In this work, the formation process of Co72Y3B15M10 MG is simulated by ab initio molecular dynamics (AIMD) method, and the effects of the addition of metalloid elements C, Si, P on the GFA and magnetic properties of Co-Y-B MGs are investigated. It is devoted to analyzing the relationship between local atomic structure and property at an atomic level.According to the results of the characterization parameters of local atomic structure (pair distribution function, coordination numbers, chemical short-range order, Voronoi polyhedron index, local five-fold symmetry, and mean square displacement), it is found that the GFA of the four alloys is different due to their different local atomic structures. Both Co72Y3B15C10 alloy and Co72Y3B15P10 alloy possess a higher fraction of prism structure, weaker solute segregation between B/C-C and B/P-P atoms, higher atomic diffusivity in the supercooled state (1100 K), and hence weakening the GFA of the alloys. The Co72Y3B15Si10 alloy has a higher fraction of icosahedral-like structure, stronger attraction between Co-Si atoms and the solute segregation between B/Si-Si atoms, lower atomic diffusivity in the supercooled state, thereby increasing the GFA. Therefore, the addition of Si is beneficial for enhancing the GFA, while the addition of C or P will reduce the GFA, that is, the GFA of the four alloys decreases in the order of Co72Y3B15Si10 > Co72Y3B25 > Co72Y3B15P10 > Co72Y3B15C10. In terms of magnetic properties, with the addition of C, Si, P elements, the total magnetic moment of Co72Y3B15M10 (M = B, C, Si, P) alloy decreases in the following order: Co72Y3B25 > Co72Y3B15Si10 > Co72Y3B15C10 > Co72Y3B15P10. The stronger p-d orbital hybridization between Co-Si atoms enhances the ferromagnetic exchange interaction, leading the total magnetic moment to be less affected by Si addition.
      通信作者: 张伟, wzhang@dlut.edu.cn ; 姚曼, yaoman@dlut.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51871039) 资助的课题.
      Corresponding author: Zhang Wei, wzhang@dlut.edu.cn ; Yao Man, yaoman@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51871039).
    [1]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45Google Scholar

    [2]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661Google Scholar

    [3]

    Wang Q Q, Zhang G L, Zhou J, Yuan C C, Shen B L 2020 J. Alloys Compd. 820 153105Google Scholar

    [4]

    Taghvaei A H, Stoica M, Prashanth K G, Eckert J 2013 Acta Mater. 61 6609Google Scholar

    [5]

    Wang W H 2007 Prog. Mater. Sci. 52 540Google Scholar

    [6]

    Lu Z P, Liu C T 2004 J. Mater. Sci. 39 3965Google Scholar

    [7]

    Zhao Y M, Li X, Liu X B, Bi J Z, Wu Y, Xiao R J, Li R, Zhang T J 2021 Mater. Sci. Technol. 86 110Google Scholar

    [8]

    Pang S J, Zhang T, Asami K, Inoue A 2002 Acta Mater. 50 489Google Scholar

    [9]

    Shen B L, Inoue A 2002 Mater. Trans. 43 1235Google Scholar

    [10]

    Jiang J W, Li Q, Duan H M, Li H X 2017 Comput. Mater. Sci 130 76Google Scholar

    [11]

    Zhang W, Li Q, Duan H M 2015 J. Appl. Phys 117 104901Google Scholar

    [12]

    Hibino T, Bitoh T 2017 J. Alloys Compd. 707 82Google Scholar

    [13]

    Wang A D, Zhao C L, He A N, Men H, Chang C T, Wang X M 2016 J. Alloys Compd. 656 729Google Scholar

    [14]

    Guo G Q, Yang L, Wu S Y, Zeng Q S, Sun C J, Wang Y G 2016 Mater. Des. 103 308Google Scholar

    [15]

    Ran Y Z, Li Y H, Ma S, Lai L Q, Chen J, Wang X D, Jiang L, Yao M, Zhang W 2022 J. Alloys Compd. 899 163326Google Scholar

    [16]

    Yu Q, Wang X D, Lou H B, Cao Q P, Jiang J Z 2016 Acta Mater. 102 116Google Scholar

    [17]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501Google Scholar

    [18]

    Chen H, Zhou S X, Dong B S, Jin J J, Liu T Q, Guan P F 2020 J. Alloys Compd. 819 153062Google Scholar

    [19]

    Liang X Y, Li Y H, Bao F, Zhu Z W, Zhang H F, Zhang W 2021 Intermetallics 132 107135Google Scholar

    [20]

    Kohn W, Sham L J 1965 Phys. Rev. 140 1133Google Scholar

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [22]

    Kresse G, Hanfner J 1993 Phys. Rev. B 47 558Google Scholar

    [23]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298Google Scholar

    [24]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [25]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [26]

    Spreiter Q, Walter M 1999 J. Comput. Phys. 152 102Google Scholar

    [27]

    Hamidreza H, Rossitza P 2018 ACS Catal. 8 11773Google Scholar

    [28]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [29]

    Cowley J M 1950 J. Appl. Phys. 21 24Google Scholar

    [30]

    Finney J L 1977 Nature 266 309Google Scholar

    [31]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nat. Commun. 6 8310Google Scholar

    [32]

    Zhao Y F, Lin D Y, Chen X H, Liu Z K, Hui X D 2014 Acta Mater. 67 266Google Scholar

    [33]

    Pont M, Puzniak R, Rao K V 1992 J. Appl. Phys. 71 5585Google Scholar

    [34]

    Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys. 130 185103Google Scholar

    [35]

    Hirata A, Hirotsu Y, Ohkubo T, Hanada T, Bengus V Z 2006 Phys. Rev. B 74 214206Google Scholar

    [36]

    Pang H, Jin Z H, Lu K 2003 Phys. Rev. B 67 094113Google Scholar

    [37]

    Williams A R, Moruzzi V L, Malozemoff A P, Terakura K 1983 IEEE Trans. Magn. 19 1983Google Scholar

    [38]

    Yuan C C, Yang F, Xi X K, Shi C L, Moritz H D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar

  • 图 1  3000和300 K时Co72Y3B15M10合金的立方超胞模型

    Fig. 1.  Cubic supercells of Co72Y3B15M10 alloys at 3000 and 300 K.

    图 2  Co72Y3B15M10合金的对分布函数 (a) Co-B; (b) B-B; (c) Co-M; (d) Y-M; (e) B-M; (f) M-M, 温度分别为2000和300 K

    Fig. 2.  PDFs between different atoms (a) Co-B; (b) B-B; (c) Co-M; (d) Y-M; (e) B-M; (f) M-M of Co72Y3B15M10 alloys at 2000 and 300 K.

    图 3  Co72Y3B15M10合金的总配位数Ni、偏配位数Nij和Warren-Cowley参数aij, 温度分别为2000和300 K

    Fig. 3.  The total coordination numbers (CNs) Ni, partial CNs Nij, and Warren-Cowley parameters aij of Co72Y3B15M10 alloys at 2000 and 300 K.

    图 4  (a)—(e) 300 K时Co72Y3B15M10合金中以Co, B, C, Si, P原子为中心的主要Voronoi多面体含量, (f) 4种合金的LFFS参数W随温度的变化趋势

    Fig. 4.  (a)–(e) Fractions of major Voronoi polyhedral centered by Co, B, C, Si, and P atoms in Co72Y3B15M10 alloys at 300 K; (f) temperature dependence of LFFS parameters W during cooling for all of the alloys.

    图 5  Co72Y3B15M10合金的均方位移随时间的变化趋势 (a) T = 2000 K, (b) T = 1100 K

    Fig. 5.  Time dependence of MSD in Co72Y3B15M10 alloys at (a) T = 2000 K and (b) T = 1100 K.

    图 6  (a) Co72Y3B25, (b) Co72Y3B15C10, (c) Co72Y3B15Si10, (d) Co72Y3B15P10合金的总电子态密度和分波态密度, (e) 4种合金在费米能级附近的总电子态密度

    Fig. 6.  The total density of state (DOS) and partial DOS for (a) Co72Y3B25, (b) Co72Y3B15C10, (c) Co72Y3B15Si10, (d) Co72Y3B15P10 alloys, and (e) TDOSs for all of the alloys near the Fermi level.

    表 1  Co72Y3B15M10合金的总磁矩和各元素的磁矩(单位: μB)

    Table 1.  The total magnetic moments of Co72Y3B15M10 alloys and the local magnetic moments for different elements (unit: μB).

    AlloysμtotalμCoμYμBμCμSiμP
    Co72Y3B2575.1791.086–0.133–0.063
    Co72Y3B15C1069.6451.005–0.097–0.067–0.042
    Co72Y3B15Si1072.7221.053–0.140–0.059–0.037
    Co72Y3B15P1068.9690.977–0.097–0.057–0.023
    下载: 导出CSV
  • [1]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45Google Scholar

    [2]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661Google Scholar

    [3]

    Wang Q Q, Zhang G L, Zhou J, Yuan C C, Shen B L 2020 J. Alloys Compd. 820 153105Google Scholar

    [4]

    Taghvaei A H, Stoica M, Prashanth K G, Eckert J 2013 Acta Mater. 61 6609Google Scholar

    [5]

    Wang W H 2007 Prog. Mater. Sci. 52 540Google Scholar

    [6]

    Lu Z P, Liu C T 2004 J. Mater. Sci. 39 3965Google Scholar

    [7]

    Zhao Y M, Li X, Liu X B, Bi J Z, Wu Y, Xiao R J, Li R, Zhang T J 2021 Mater. Sci. Technol. 86 110Google Scholar

    [8]

    Pang S J, Zhang T, Asami K, Inoue A 2002 Acta Mater. 50 489Google Scholar

    [9]

    Shen B L, Inoue A 2002 Mater. Trans. 43 1235Google Scholar

    [10]

    Jiang J W, Li Q, Duan H M, Li H X 2017 Comput. Mater. Sci 130 76Google Scholar

    [11]

    Zhang W, Li Q, Duan H M 2015 J. Appl. Phys 117 104901Google Scholar

    [12]

    Hibino T, Bitoh T 2017 J. Alloys Compd. 707 82Google Scholar

    [13]

    Wang A D, Zhao C L, He A N, Men H, Chang C T, Wang X M 2016 J. Alloys Compd. 656 729Google Scholar

    [14]

    Guo G Q, Yang L, Wu S Y, Zeng Q S, Sun C J, Wang Y G 2016 Mater. Des. 103 308Google Scholar

    [15]

    Ran Y Z, Li Y H, Ma S, Lai L Q, Chen J, Wang X D, Jiang L, Yao M, Zhang W 2022 J. Alloys Compd. 899 163326Google Scholar

    [16]

    Yu Q, Wang X D, Lou H B, Cao Q P, Jiang J Z 2016 Acta Mater. 102 116Google Scholar

    [17]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501Google Scholar

    [18]

    Chen H, Zhou S X, Dong B S, Jin J J, Liu T Q, Guan P F 2020 J. Alloys Compd. 819 153062Google Scholar

    [19]

    Liang X Y, Li Y H, Bao F, Zhu Z W, Zhang H F, Zhang W 2021 Intermetallics 132 107135Google Scholar

    [20]

    Kohn W, Sham L J 1965 Phys. Rev. 140 1133Google Scholar

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [22]

    Kresse G, Hanfner J 1993 Phys. Rev. B 47 558Google Scholar

    [23]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298Google Scholar

    [24]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [25]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [26]

    Spreiter Q, Walter M 1999 J. Comput. Phys. 152 102Google Scholar

    [27]

    Hamidreza H, Rossitza P 2018 ACS Catal. 8 11773Google Scholar

    [28]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [29]

    Cowley J M 1950 J. Appl. Phys. 21 24Google Scholar

    [30]

    Finney J L 1977 Nature 266 309Google Scholar

    [31]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nat. Commun. 6 8310Google Scholar

    [32]

    Zhao Y F, Lin D Y, Chen X H, Liu Z K, Hui X D 2014 Acta Mater. 67 266Google Scholar

    [33]

    Pont M, Puzniak R, Rao K V 1992 J. Appl. Phys. 71 5585Google Scholar

    [34]

    Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys. 130 185103Google Scholar

    [35]

    Hirata A, Hirotsu Y, Ohkubo T, Hanada T, Bengus V Z 2006 Phys. Rev. B 74 214206Google Scholar

    [36]

    Pang H, Jin Z H, Lu K 2003 Phys. Rev. B 67 094113Google Scholar

    [37]

    Williams A R, Moruzzi V L, Malozemoff A P, Terakura K 1983 IEEE Trans. Magn. 19 1983Google Scholar

    [38]

    Yuan C C, Yang F, Xi X K, Shi C L, Moritz H D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar

  • [1] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金. 物理学报, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [2] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良. Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究. 物理学报, 2023, 72(4): 046301. doi: 10.7498/aps.72.20222037
    [3] 孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火. B元素添加对FePBCCu合金非晶形成能力、磁性能和力学性能的影响. 物理学报, 2023, 72(2): 026101. doi: 10.7498/aps.72.20221553
    [4] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [5] 李蕊轩, 张勇. 熵在非晶材料合成中的作用. 物理学报, 2017, 66(17): 177101. doi: 10.7498/aps.66.177101
    [6] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平. 块体非晶合金的韧塑化. 物理学报, 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [7] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [8] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [9] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [10] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [11] 张雅楠, 王有骏, 孔令体, 李金富. Y对Fe-Si-B 合金非晶形成能力及软磁性能的影响. 物理学报, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [12] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [13] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [14] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [15] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [16] 刘涛, 李卫. 时效工艺对PtCo合金磁性能的影响. 物理学报, 2009, 58(8): 5773-5777. doi: 10.7498/aps.58.5773
    [17] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [18] 张 辉, 张国英, 杨 爽, 吴 迪, 戚克振. Zr基大块非晶中添加元素对非晶形成能力及耐蚀性的影响. 物理学报, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [19] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 大块非晶临界冷却速率的非等温转变计算模型. 物理学报, 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [20] 朱明刚, 李卫, 董生智, 李岫梅. Ga替代对纳米晶Nd(Fe,Co)B黏结磁体磁性能的影响. 物理学报, 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
计量
  • 文章访问数:  4119
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 修回日期:  2022-07-25
  • 上网日期:  2022-11-03
  • 刊出日期:  2022-11-20

/

返回文章
返回