搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

$ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $反应量子波包动力学研究

赵文丽 孙丰伟 张红 王永刚 高峰 孟庆田

引用本文:
Citation:

$ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $反应量子波包动力学研究

赵文丽, 孙丰伟, 张红, 王永刚, 高峰, 孟庆田

Quantum dynamics studies of the $\rm D+SiD^+ \to D_2+Si^ +$ reaction

Zhao Wen-Li, Sun Feng-Wei, Zhang Hong, Wang Yong-Gang, Gao Feng, Meng Qing-Tian
PDF
HTML
导出引用
  • 本文基于最新构建的${{\rm{SiH}}_2^+}({\tilde{\rm{X}}}{}^{3}{\rm{A}}'')$势能面, 运用切比雪夫波包方法, 对初始态为$ \nu = 0, j = 0 $${\text{D}} + {\text{Si}}{{\text{D}}^ + } $反应体系在$ 1.0 \times {10^{ - 3}} $—1.0 eV的碰撞能量范围内进行动力学研究. 通过对角动量量子数$ J \leqslant 110 $的所有分波进行计算, 运用耦合态近似和考虑科里奥利耦合效应的精确量子力学两种方法, 得到该反应的反应概率、积分散射截面和速率常数. 文章详细分析了碰撞能量和科里奥利耦合效应对该反应的动力学性质的影响, 并与H+SiH+反应做了对比. 结果表明, 忽略科里奥利耦合效应会使D +SiD+反应积分散射截面和速率常数增大. 与H+SiH+反应动力学相比较, D +SiD+反应的积分反应截面的值较小且随着能量的衰减非常缓慢, 在低能区没有H+SiH+随能量增大而剧烈衰减的情况. 计算发现, 相同温度下, D +SiD+反应速率常数小于H +SiH+反应速率常数, 随着温度的升高, 二者的差距减小. 这表明, 同位素替代对反应的动力学性质有明显的影响.
    The quantum dynamics calculations are carried out for the title reaction D +SiD+→D2+Si+ to obtain the initial ($ \nu = 0{\text{ }},j = 0 $)reaction probability, integral cross section (ICS) and rate constant on the potential energy surface (PES) of Gao, Meng and Song. A total of 110 partial waves are calculated by using the Chebyshev wave packet method with full Coriolis coupling (CC) and centrifugal sudden (CS) approximation in a collision energy range from 1.0 × 10–3 to 1.0 eV. The calculated probability decreases with the collision energy increasing except for J≤40. The calculation results indicate that the CS approximation will overestimate or underestimate the reaction probability . The ICS decreases with the collision energy increasing and shows an oscillatory structure due to the$\rm{SiH_2^+} $well on the reaction path. The results show that the neglect of the Coriolis coupling leads to the overestimation of the cross section and the rate constant. Besides, the discrepancy between the integral cross sections from the CC and CS calculations decreases clearly with collision energy increasing. Comparison with the corresponding results of H+CH+ reaction indicates that isotope substitution reaction makes the cross section and the rate constant underestimated. The resulting integral reaction cross section displays less oscillatory structure, especially in the exact quantum calculation with the full Coriolis coupling effect taken into consideration. The kinetic isotope effect $(\kappa_{\rm H+SiH^+}(T)/\kappa_{\rm D+SiD^+}(T))$is found to decrease with temperature increasing. It can be seen that the reduced mass of reactant can exert a certain effect on dynamic behavior.
      通信作者: 高峰, gaofeng@sdau.edu.cn ; 孟庆田, qtmeng@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674198, 51971161)和山东省自然科学基金(批准号:ZR2022MA087)资助的课题
      Corresponding author: Gao Feng, gaofeng@sdau.edu.cn ; Meng Qing-Tian, qtmeng@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674198 , 51971161) and Shandong Provincial Natural Science Foundation of China (Grant No. ZR2022MA087)
    [1]

    Bender C F, Schaefer H F 1971 J. Mol. Spectrosc. 37 423Google Scholar

    [2]

    Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446Google Scholar

    [3]

    Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285Google Scholar

    [4]

    Herráez-Aguilar D, Jambrina P G, Menéndez M, Aldegunde J, Warmbier R, Aoiz F J 2014 Phys. Chem. Chem. Phys. 16 24800Google Scholar

    [5]

    Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302Google Scholar

    [6]

    Guo J, Zhang A J, Zhou Y, Liu J Y, Jia J F, Wu H S 2017 Chem. Phys. Lett. 689 121Google Scholar

    [7]

    Sundaram P, Manivannan V, Padmanaban R 2017 Phys. Chem. Chem. Phys. 19 20172Google Scholar

    [8]

    Scheier P, Marsen B, Lonfat M, Schneider W D 2000 Surf. Sci. 458 113Google Scholar

    [9]

    Maus M, Gantefor G, Eberhardt W 2000 Appl. Phys. A 70 535Google Scholar

    [10]

    Kasap S, Capper P 2017 Springer Handbook of Electronic and Photonic Materials (Heidelberg: Springer) pp573–576

    [11]

    Zhang Y G, Dou G, Cui J, Yu Y 2018 J. Mol. Struct. 1165 318Google Scholar

    [12]

    Bauer C, Hirst D M, Hall D I, Sarre P J, Rosmus P J. 1994 Chem. Sot. Faraday Trans. 90 517Google Scholar

    [13]

    Vach H, Chaâbane N, Peslherbe G H 2002 Chem. Phys. Lett. 352 127Google Scholar

    [14]

    Chaâbane N, Vach H, Cabarrocas P R I 2004 J. Phys. Chem. A 108 1818Google Scholar

    [15]

    Gao F, Zhang L L, Zhao W L, Meng Q T, Song Y Z 2019 J. Chem. Phys. 150 224304Google Scholar

    [16]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [17]

    高峰 2020 博士学位论文 (济南: 山东师范大学)

    Gao F 2020 Ph. D. Dissertation (Jinan: Shandong Normal University) (in Chinese)

    [18]

    Zhao W L, Tan R S, Cao X C, Gao F, Meng Q T 2021 Chin. Phys. B 30 123403Google Scholar

    [19]

    王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志 2015 物理学报 64 043402Google Scholar

    Wang M X, Wang M S, Yang C L, Liu J, Ma X G, Wang L Z 2015 Acta Phys. Sin. 64 043402Google Scholar

    [20]

    夏文泽, 于永江, 杨传路 2012 物理学报 61 223401Google Scholar

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin 61 223401Google Scholar

    [21]

    Guo L, Yang Y F, Fan X X, Ma F C, Li Y Q 2017 Commun. Theor. Phys. 67 549Google Scholar

    [22]

    Zhang J Z H 1999 Theory and Application of Quantum Molecular Dynamics (Singapore: World Scientific) pp149–150

    [23]

    Lin S Y, Guo H 2003 J. Chem. Phys. 119 11602Google Scholar

    [24]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 102 7390Google Scholar

    [25]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 103 2903Google Scholar

    [26]

    Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967Google Scholar

    [27]

    Neuhauser D, Baer M, Judson R S, Kouri D J 1990 J. Chem. Phys. 93 312Google Scholar

    [28]

    Althorpe S C 2001 J. Chem. Phys. 114 1601Google Scholar

    [29]

    Zhai H C, Lin S Y 2015 Chem. Phys. 455 57Google Scholar

    [30]

    Bowman J M 1991 J. Phys. Chem. 95 4960Google Scholar

    [31]

    Gray S K, Goldfield, E M, Schatz G C, Balint-Kurti G G 1999 Phys. Chem. Chem. Phys. 1 1141Google Scholar

    [32]

    Clary D C 1984 Mol. Phys. 53 3Google Scholar

    [33]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431Google Scholar

    [34]

    De Fazio D, Castillo J F 1999 Phys. Chem. Chem. Phys. 1 1165Google Scholar

    [35]

    Lu R F, Wang Y H, Deng K M, 2013 J. Comput. Chem. 34 1735Google Scholar

  • 图 1  ${\rm{Si{H}}}_2^+(\rm{X^2A_1}) $ 势能面(∠[H-Si-H] = 118.38º), 图中等势线间隔为0.2 eV, 红色实线为最小能量路径

    Fig. 1.  The PES of ${\rm{Si{H}}}_2^+ $(X2A1) for bending angle∠[H-Si-H] = 118.38º starting from–5.82 eV, the contour drawn with an increment of 0.2 eV, the solid red line is minimum energy path.

    图 2  最小能量路径(∠[D-Si-D]分别为30°, 60°, 90°, 120°, 180°)

    Fig. 2.  The MEP of different approaching angles (∠[D-Si-D] = 30°, 60°, 90°, 120°, 180°)for the title reaction.

    图 3  $ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $反应不同分波 (J = 5, 20, 40, 60, 80, 100)的反应概率随碰撞能量的变化, 黑色实线对应CS概率, 红色虚线对应CC概率

    Fig. 3.  The reaction probabilities of CC and CS calculations for $ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $ reaction at J = 5, 20, 40, 60, 80, and 100, The black soid line is for CS probability and the red dashed line is for CC probability.

    图 4  不同的角动量量子数下H+SiH+与D+SiD+的CC反应概率, 黑色实线对应H+SiH+反应, 红色虚线对应D+SiD+反应

    Fig. 4.  The reaction probabilities of CC calculations for H +SiH+ and D +SiD+ reactions at J = 10, 20, 40, 60, 80, and 90. The black solid line is for H + SiH+ reaction and the red dashed line is for D +SiD+ reaction.

    图 5  H + SiH+与D + SiD+反应 ICS 随着碰撞能量的变化(1.0 ×10–3—1.0 eV)

    Fig. 5.  The ICSs of CS and CC calculations for H+ SiH+ and D +SiD+ reactions over collision energy of 3 1.0 ×10–3—1.0 eV.

    图 6  H+ SiH+$ {\text{D}} + {\text{Si}}{{\text{D}}^ + } $反应速率常数随温度的变化

    Fig. 6.  Variation of reaction rate constant of H+ SiH+ and $ {\text{D}} + {\text{Si}}{{\text{D}}^ + } $with temperature.

    图 7  动力学同位素效应与温度的关系

    Fig. 7.  Temperature dependence of kinetic isotope effect.

    表 1  波包计算中的数值参量(除特殊说明, 均采用原子单位 a.u.)

    Table 1.  Model parameters of wave packet calculation (The atomic unit is used in the calculation unlessotherwise stated).

    坐标取值范围和基组数吸收势初始波包光谱控制流计算的位置传播步数
    $ R \in (0.2, \, 22) \; ({N_R} = 383) $

    $ r \in (0.5, \, 16) \; ({N_r} = 255) $

    $ \gamma \in (0, \, {180^ \circ }) \; ({N_\gamma } = 200) $
    $ {R_d} = 18.0 \;\; {d_R} = 0.0005 $

    $ {r_d} = 14.0 \;\; {d_r} = 0.001 $
    $ {R_0} = 16.0 $

    $ {E_0} = 0.15{\text{ eV}} $

    $ \delta = 0.3 $
    1.0$ {r_f} = 13.8 $50000
    下载: 导出CSV
  • [1]

    Bender C F, Schaefer H F 1971 J. Mol. Spectrosc. 37 423Google Scholar

    [2]

    Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446Google Scholar

    [3]

    Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285Google Scholar

    [4]

    Herráez-Aguilar D, Jambrina P G, Menéndez M, Aldegunde J, Warmbier R, Aoiz F J 2014 Phys. Chem. Chem. Phys. 16 24800Google Scholar

    [5]

    Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302Google Scholar

    [6]

    Guo J, Zhang A J, Zhou Y, Liu J Y, Jia J F, Wu H S 2017 Chem. Phys. Lett. 689 121Google Scholar

    [7]

    Sundaram P, Manivannan V, Padmanaban R 2017 Phys. Chem. Chem. Phys. 19 20172Google Scholar

    [8]

    Scheier P, Marsen B, Lonfat M, Schneider W D 2000 Surf. Sci. 458 113Google Scholar

    [9]

    Maus M, Gantefor G, Eberhardt W 2000 Appl. Phys. A 70 535Google Scholar

    [10]

    Kasap S, Capper P 2017 Springer Handbook of Electronic and Photonic Materials (Heidelberg: Springer) pp573–576

    [11]

    Zhang Y G, Dou G, Cui J, Yu Y 2018 J. Mol. Struct. 1165 318Google Scholar

    [12]

    Bauer C, Hirst D M, Hall D I, Sarre P J, Rosmus P J. 1994 Chem. Sot. Faraday Trans. 90 517Google Scholar

    [13]

    Vach H, Chaâbane N, Peslherbe G H 2002 Chem. Phys. Lett. 352 127Google Scholar

    [14]

    Chaâbane N, Vach H, Cabarrocas P R I 2004 J. Phys. Chem. A 108 1818Google Scholar

    [15]

    Gao F, Zhang L L, Zhao W L, Meng Q T, Song Y Z 2019 J. Chem. Phys. 150 224304Google Scholar

    [16]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [17]

    高峰 2020 博士学位论文 (济南: 山东师范大学)

    Gao F 2020 Ph. D. Dissertation (Jinan: Shandong Normal University) (in Chinese)

    [18]

    Zhao W L, Tan R S, Cao X C, Gao F, Meng Q T 2021 Chin. Phys. B 30 123403Google Scholar

    [19]

    王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志 2015 物理学报 64 043402Google Scholar

    Wang M X, Wang M S, Yang C L, Liu J, Ma X G, Wang L Z 2015 Acta Phys. Sin. 64 043402Google Scholar

    [20]

    夏文泽, 于永江, 杨传路 2012 物理学报 61 223401Google Scholar

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin 61 223401Google Scholar

    [21]

    Guo L, Yang Y F, Fan X X, Ma F C, Li Y Q 2017 Commun. Theor. Phys. 67 549Google Scholar

    [22]

    Zhang J Z H 1999 Theory and Application of Quantum Molecular Dynamics (Singapore: World Scientific) pp149–150

    [23]

    Lin S Y, Guo H 2003 J. Chem. Phys. 119 11602Google Scholar

    [24]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 102 7390Google Scholar

    [25]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 103 2903Google Scholar

    [26]

    Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967Google Scholar

    [27]

    Neuhauser D, Baer M, Judson R S, Kouri D J 1990 J. Chem. Phys. 93 312Google Scholar

    [28]

    Althorpe S C 2001 J. Chem. Phys. 114 1601Google Scholar

    [29]

    Zhai H C, Lin S Y 2015 Chem. Phys. 455 57Google Scholar

    [30]

    Bowman J M 1991 J. Phys. Chem. 95 4960Google Scholar

    [31]

    Gray S K, Goldfield, E M, Schatz G C, Balint-Kurti G G 1999 Phys. Chem. Chem. Phys. 1 1141Google Scholar

    [32]

    Clary D C 1984 Mol. Phys. 53 3Google Scholar

    [33]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431Google Scholar

    [34]

    De Fazio D, Castillo J F 1999 Phys. Chem. Chem. Phys. 1 1165Google Scholar

    [35]

    Lu R F, Wang Y H, Deng K M, 2013 J. Comput. Chem. 34 1735Google Scholar

  • [1] 周勇. F+CHD3→HF+CD3反应C—H伸缩振动激发的量子动力学研究. 物理学报, 2024, 73(9): 098201. doi: 10.7498/aps.73.20231832
    [2] 赵文丽, 王永刚, 张路路, 岳大光, 孟庆田. 基于新CH2(${\tilde {\bf{X}}{}^3}{\bf{A''}}$)势能面的${\bf C}{\bf({}^3}{\bf{P})} + {\bf{H}_2(}{\bf X^1}\Sigma _{\bf g}^ + {\bf )} $ $ \to {\bf H({}^2}{\bf S}) + {\bf CH}{(\bf{}^2}\Pi ) $反应量子波包动力学. 物理学报, 2020, 69(8): 083401. doi: 10.7498/aps.69.20200132
    [3] 袁方园, 朱子亮. D + DBr反应的态-态动力学研究. 物理学报, 2020, 69(11): 113401. doi: 10.7498/aps.69.20200321
    [4] 袁美玲, 李文涛. O++H2 → OH++H反应的动力学研究. 物理学报, 2019, 68(8): 083401. doi: 10.7498/aps.68.20182141
    [5] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应. 物理学报, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [6] 吕子瑶, 潘雨佳, 王长顺. 不同类型偶氮材料光致双折射的温度特性研究. 物理学报, 2017, 66(24): 244203. doi: 10.7498/aps.66.244203
    [7] 张静, 魏巍, 高守宝, 孟庆田. H+Li2: 一个典型的释能反应体系及其含时动力学研究. 物理学报, 2015, 64(6): 063101. doi: 10.7498/aps.64.063101
    [8] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [9] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [10] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质. 物理学报, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [11] 臧华平, 李文峰, 令狐荣锋, 程新路, 杨向东. 钠分子同位素替代对低温下的He-Na2冷碰撞体系转动激发积分散射截面的影响. 物理学报, 2011, 60(2): 020304. doi: 10.7498/aps.60.020304
    [12] 李文峰, 令狐荣锋, 程新路, 杨向东. 氦同位素原子与钠分子碰撞转动激发积分散射截面的理论计算. 物理学报, 2010, 59(7): 4591-4597. doi: 10.7498/aps.59.4591
    [13] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [14] 刘会师, 忻向军, 尹霄丽, 余重秀, 张琦. 切比雪夫光混沌发生器的优化. 物理学报, 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
    [15] 戴 伟, 冯 灏, 孙卫国, 唐永建, 申 立, 于江周. 用振动密耦合方法研究低能电子与N2分子碰撞的振动激发微分散射截面. 物理学报, 2008, 57(1): 143-148. doi: 10.7498/aps.57.143
    [16] 余春日, 凤尔银, 程新路, 杨向东. He-HI复合物势能面及微分散射截面的理论研究. 物理学报, 2007, 56(8): 4441-4447. doi: 10.7498/aps.56.4441
    [17] 李民权, 陶小俊, 赵 瑾, 吴先良. 基于辛Runge-Kutta-Nystrom方法的雷达散射截面计算. 物理学报, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [18] 张程华, 邱 巍, 辛俊丽, 牛英煜, 王晓伟, 王京阳. 电子碰撞下氢原子单离化反应三重微分散射截面的计算. 物理学报, 2003, 52(10): 2449-2452. doi: 10.7498/aps.52.2449
    [19] 白丽华, 张庆刚, 刘新国. D+CD4→CD3+D2反应的四维量子散射计算. 物理学报, 2003, 52(11): 2774-2780. doi: 10.7498/aps.52.2774
    [20] 金石琦, 徐至展. e-Ar(3p54s,J=2)的微分散射截面. 物理学报, 1998, 47(10): 1621-1624. doi: 10.7498/aps.47.1621
计量
  • 文章访问数:  1800
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 修回日期:  2022-06-30
  • 上网日期:  2022-11-14
  • 刊出日期:  2022-11-20

/

返回文章
返回