搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

F+CHD3→HF+CD3反应C—H伸缩振动激发的量子动力学研究

周勇

引用本文:
Citation:

F+CHD3→HF+CD3反应C—H伸缩振动激发的量子动力学研究

周勇

Quantum dynamics study of C—H stretching vibrational excitation in the F+CHD3 → HF+CD3 reaction

Zhou Yong
PDF
HTML
导出引用
  • 对多原子化学反应进行精确的理论模拟研究, 是当前量子动力学领域的重要挑战之一. 本文运用七维的量子含时波包方法, 对反应物振动基态和C—H伸缩振动第一激发态的F+CHD3反应进行动力学研究. 分析了不同振动态条件下的反应概率, 发现当碰撞能低于0.06 eV时反应概率曲线均表现出许多剧烈的振荡峰, 支持实验上所推测的动力学共振现象. 当碰撞能介于0.06—0.3 eV之间时, 振动激发态反应中HF产物通道的反应概率低于振动基态反应, 与实验观测结果一致. 模拟发现: 相比于振动基态的情况, 低能碰撞时C—H伸缩振动激发态反应的非含时波函数在过渡态区域更倾向于靠近D原子一侧, 并将这一现象归结为振动激发态势能面在大碰撞角区域更显著的能量优势, 解释了伸缩振动激发对HF产物通道的抑制作用. 本研究为实验结果的解释提供了重要的理论支持, 有助于更深入地理解多原子反应中振动模式激发对动力学过程的影响.
    In recent decades, significant progress has been made in the precise theoretical investigation of gas-phase chemical reactions. Presently, a major challenge in the field of quantum dynamics is to develop the precise methodologies for studying chemical reactions involving more than four atoms. As a typical multi-atomic reaction system, the F+CH4 reaction and its isotopic substitution reactions have attracted widespread attention from both experimental and theoretical perspectives in recent years. Experimental studies on the reaction of F+CHD3 have revealed that the stretching vibration excitation of the C—H bond inhibits the bond dissociation, favoring the formation of DF+CHD2 product channels. In this study, we use a seven-dimensional quantum time-dependent wave packet method to investigate the dynamics of the F+CHD3 reaction in both the reactant vibrational ground state and the first stretching excited state of the C—H bond. In this work, the reaction probabilities under different vibrational conditions are analyzed, showing that when the collision energy is below 0.06 eV, the reaction probability curves exhibit numerous fast-oscillating peaks, supporting the experimentally suggested phenomena of dynamic resonance. In a collision energy range from 0.06 eV to 0.3 eV, the reaction probability for the HF product channel in the vibrational excited state is lower than that in the ground state, which is consistent with experimental observation. Through the analysis of the time-independent wave functions of product channels under low-energy collision conditions, it is found that for reactions involving vibrational ground states, the HF products in the product asymptotic region and the reaction transition state region are in the v' = 2 excited state and v' = 3 excited state of stretching vibration, respectively, which are consistent with previous experimental observations and six-dimensional quantum wave packet simulations. For reactions involving the first excited state of C—H stretching vibration, the HF products in the product asymptotic region and the reaction transition state region are both in the v' = 3 excited state of stretching vibration, which are consistent with the results obtained based on energy analysis. Simulation results indicate that in the case of low-energy collisions, the time-independent wave function for the C—H stretching vibrational excited state tends to be closer to the D atom side in the transition state region. This phenomenon is attributed to the more significant energy advantage of the vibrational excited state potential energy surface in the large collision angle region, explaining the inhibitory effect of stretching vibration excitation on the HF product channel. This study offers important theoretical support for explaining experimental results and contributes to a more in-depth understanding of the influence of vibrational mode excitations on the dynamical processes in poly-atomic reactions.
      通信作者: 周勇, yong.zhou@mail.ahnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 22373002, 21873004)、安徽省自然科学基金(批准号: 1708085QB41)、国家教育部国家级一流本科课程项目(原子物理学)和安徽省教育厅高等学校省级质量工程项目(批准号: 2019mooc051)资助的课题.
      Corresponding author: Zhou Yong, yong.zhou@mail.ahnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 22373002, 21873004), the Natural Science Foundation of Anhui Province, China (Grant No. 1708085QB41), the National First-Class Undergraduate Course Project (Atomic Physics) from the Ministry of Education of China, and the Higher Education Provincial Quality Engineering Project from the Department of Education of Anhui Province, China (Grant No. 2019mooc051).
    [1]

    Zhang D H, Collins M A, Lee S Y 2000 Science 290 961Google Scholar

    [2]

    Yang M, Zhang D H, Collins M A, Lee S Y 2001 J. Chem. Phys. 114 4759Google Scholar

    [3]

    Zhang D H 2006 J. Chem. Phys. 125 133102Google Scholar

    [4]

    Xiao C, Xu X, Liu S, Wang T, Dong W, Yang T, Sun Z, Dai D X, Xu X, Zhang D H, Yang X M 2011 Science 333 440Google Scholar

    [5]

    Roberto-Neto O, Machado F B C, Ornellas F R 2005 Chem. Phys. 315 27Google Scholar

    [6]

    Zhou J, Lin J J, Liu K P 2010 Mol. Phys. 108 957Google Scholar

    [7]

    Czakó G, Bowman J M 2011 Phys. Chem. Chem. Phys. 13 8306Google Scholar

    [8]

    Yang J Y, Zhang D, Chen Z, Blauert F, Jiang B, Dai D X, Wu G R, Zhang D H, Yang X M 2015 J. Chem. Phys. 143 044316Google Scholar

    [9]

    Palma J, Manthe U 2017 J. Chem. Phys. 146 214117Google Scholar

    [10]

    Ellerbrock R, Manthe U, Palma J 2019 J. Phys. Chem. A 123 7237Google Scholar

    [11]

    Marjollet A, Inhester L, Welsch R 2022 J. Chem. Phys. 156 044101Google Scholar

    [12]

    Shiu W C, Lin J J, Liu K P, Wu M, Parker D H 2003 J. Chem. Phys. 120 117Google Scholar

    [13]

    Shiu W C, Lin J J, Liu K P 2004 Phys. Rev. Lett. 92 103201Google Scholar

    [14]

    Zhou J G, Lin J J, Liu K P 2003 J. Chem. Phys. 119 8289Google Scholar

    [15]

    Zhou J G, Lin J J, Liu K P 2004 J. Chem. Phys. 121 813Google Scholar

    [16]

    Troya D, Millán J, Baños I, González M 2004 J. Chem. Phys. 120 5181Google Scholar

    [17]

    Espinosa-García J, Bravo J L, Rangel C 2007 J. Phys. Chem. A 111 2761Google Scholar

    [18]

    Czakó G, Shepler B C, Braams B J, Bowman J M 2009 J. Chem. Phys. 130 084301Google Scholar

    [19]

    Nyman G, Espinosa-Garcia J 2007 J. Phys. Chem. A 111 11943Google Scholar

    [20]

    Wang D, Czakó G 2013 J. Phys. Chem. A 117 7124Google Scholar

    [21]

    Westermann T, Eisfeld W, Manthe U 2013 J. Chem. Phys. 139 014309Google Scholar

    [22]

    von Horsten H F, Clary D C 2011 Phys. Chem. Chem. Phys. 13 4340Google Scholar

    [23]

    Qi J, Song H W, Yang M H, Palma J, Manthe U, Guo H 2016 J. Chem. Phys. 144 171101Google Scholar

    [24]

    Zhao B, Manthe U 2020 J. Chem. Phys. 152 231102Google Scholar

    [25]

    Chen J, Xu X, Liu S, Zhang D H 2018 Phys. Chem. Chem. Phys. 20 9090Google Scholar

    [26]

    Liu S, Chen J, Zhang X R, Zhang D H 2023 Chem. Sci. 14 7973Google Scholar

    [27]

    Zhang W, Kawamata H, Liu K 2009 Science 325 303Google Scholar

    [28]

    Czakó G, Shuai Q, Liu K P, Bowman J M 2010 J. Chem. Phys. 133 131101Google Scholar

    [29]

    Zhang W, Zhou Y, Wu G, Lu Y, Pan H, Fu B, Shuai Q, Liu L, Liu S, Zhang L, Jiang B, Dai D, Lee S Y, Xie Z, Braams B J, Bowman J M, Collins M A, Zhang D H, Yang X 2010 Proc. Natl. Acad. Sci. 107 12782Google Scholar

    [30]

    Zhou Y, Fu B N, Wang C R, Collins M A, Zhang D H 2011 J. Chem. Phys. 134 064323Google Scholar

    [31]

    Xu X, Chen J, Zhang D H 2014 Chin. J. Chem. Phys. 27 373Google Scholar

    [32]

    Zhou Y, Zhang D H 2014 J. Chem. Phys. 141 194307Google Scholar

    [33]

    Li J, Chen J, Zhao Z, Xie D, Zhang D H, Guo H 2015 J. Chem. Phys. 142 204302Google Scholar

    [34]

    Yang M, Lee S Y, Zhang D H 2007 J. Chem. Phys. 126 064303Google Scholar

    [35]

    Czakó G, Bowman J M 2009 J. Chem. Phys. 131 244302Google Scholar

    [36]

    Czakó G, Bowman J M 2009 J. Am. Chem. Soc. 131 17534Google Scholar

    [37]

    Zhang D H, Light J C 1996 J. Chem. Phys. 104 4544Google Scholar

  • 图 1  用于研究X+YCZ3反应的8维Jacobi坐标系统

    Fig. 1.  8D Jacobi coordinate system for X+YCZ3 reactions.

    图 2  总角动量Jtotal = 0时, F + CHD3 (vC—H str = 0, 1) → HF + CD3反应的总反应概率

    Fig. 2.  Total reaction probabilities of the F + CHD3 (vC–H str = 0, 1) → HF + CD3 reaction with total angular momentum Jtotal = 0.

    图 3  产物通道的非含时波函数 (a)振动基态, 碰撞能Ec = 0.018 eV; (b) C—H键伸缩振动第一激发态, 碰撞能Ec = 0.025 eV; 图中竖直方向和水平方向分别对应散射坐标和HF产物坐标

    Fig. 3.  Time-independent wave function in product channel: (a) Ground vibrational state with collision energy Ec = 0.018 eV; (b) the first C—H stretching vibrational excited state with collision energy Ec = 0.025 eV. The vertical and horizontal directions correspond to the scattering coordinate and the HF product coordinate, respectively.

    图 4  碰撞能Ec = 0.06 eV时, 反应物区的非含时波函数随反应坐标R和入射F原子倾斜角θ的变化 (a)振动基态; (b) C—H键伸缩振动第一激发态

    Fig. 4.  Time-independent wave functions in the reactant region as a function of reaction coordinate R and the inclination angle θ of incoming F atom at a collision energy of Ec = 0.06 eV: (a) Ground vibrational state; (b) the first C—H stretching vibrational state.

    图 5  碰撞能Ec = 0.2 eV时, 反应物区的非含时波函数随反应坐标R和入射F原子倾斜角θ的变化 (a)振动基态; (b) C—H键伸缩振动第一激发态

    Fig. 5.  Time-independent wave functions in the reactant region as a function of reaction coordinate R and the inclination angle θ of incoming F atom at a collision energy of Ec = 0.2 eV: (a) Ground vibrational state; (b) the first C—H stretching vibrational state.

    图 6  振动态平均的反应有效势能随反应坐标R和入射F原子倾斜角θ的变化 (a) 振动基态; (b) C—H键伸缩振动第一激发态

    Fig. 6.  Averaged effective potential energy over vibrational states as a function of the reaction coordinate R and the inclination angle θ of incoming F atom: (a) Ground vibrational state; (b) the first C—H stretching vibrational excited state.

  • [1]

    Zhang D H, Collins M A, Lee S Y 2000 Science 290 961Google Scholar

    [2]

    Yang M, Zhang D H, Collins M A, Lee S Y 2001 J. Chem. Phys. 114 4759Google Scholar

    [3]

    Zhang D H 2006 J. Chem. Phys. 125 133102Google Scholar

    [4]

    Xiao C, Xu X, Liu S, Wang T, Dong W, Yang T, Sun Z, Dai D X, Xu X, Zhang D H, Yang X M 2011 Science 333 440Google Scholar

    [5]

    Roberto-Neto O, Machado F B C, Ornellas F R 2005 Chem. Phys. 315 27Google Scholar

    [6]

    Zhou J, Lin J J, Liu K P 2010 Mol. Phys. 108 957Google Scholar

    [7]

    Czakó G, Bowman J M 2011 Phys. Chem. Chem. Phys. 13 8306Google Scholar

    [8]

    Yang J Y, Zhang D, Chen Z, Blauert F, Jiang B, Dai D X, Wu G R, Zhang D H, Yang X M 2015 J. Chem. Phys. 143 044316Google Scholar

    [9]

    Palma J, Manthe U 2017 J. Chem. Phys. 146 214117Google Scholar

    [10]

    Ellerbrock R, Manthe U, Palma J 2019 J. Phys. Chem. A 123 7237Google Scholar

    [11]

    Marjollet A, Inhester L, Welsch R 2022 J. Chem. Phys. 156 044101Google Scholar

    [12]

    Shiu W C, Lin J J, Liu K P, Wu M, Parker D H 2003 J. Chem. Phys. 120 117Google Scholar

    [13]

    Shiu W C, Lin J J, Liu K P 2004 Phys. Rev. Lett. 92 103201Google Scholar

    [14]

    Zhou J G, Lin J J, Liu K P 2003 J. Chem. Phys. 119 8289Google Scholar

    [15]

    Zhou J G, Lin J J, Liu K P 2004 J. Chem. Phys. 121 813Google Scholar

    [16]

    Troya D, Millán J, Baños I, González M 2004 J. Chem. Phys. 120 5181Google Scholar

    [17]

    Espinosa-García J, Bravo J L, Rangel C 2007 J. Phys. Chem. A 111 2761Google Scholar

    [18]

    Czakó G, Shepler B C, Braams B J, Bowman J M 2009 J. Chem. Phys. 130 084301Google Scholar

    [19]

    Nyman G, Espinosa-Garcia J 2007 J. Phys. Chem. A 111 11943Google Scholar

    [20]

    Wang D, Czakó G 2013 J. Phys. Chem. A 117 7124Google Scholar

    [21]

    Westermann T, Eisfeld W, Manthe U 2013 J. Chem. Phys. 139 014309Google Scholar

    [22]

    von Horsten H F, Clary D C 2011 Phys. Chem. Chem. Phys. 13 4340Google Scholar

    [23]

    Qi J, Song H W, Yang M H, Palma J, Manthe U, Guo H 2016 J. Chem. Phys. 144 171101Google Scholar

    [24]

    Zhao B, Manthe U 2020 J. Chem. Phys. 152 231102Google Scholar

    [25]

    Chen J, Xu X, Liu S, Zhang D H 2018 Phys. Chem. Chem. Phys. 20 9090Google Scholar

    [26]

    Liu S, Chen J, Zhang X R, Zhang D H 2023 Chem. Sci. 14 7973Google Scholar

    [27]

    Zhang W, Kawamata H, Liu K 2009 Science 325 303Google Scholar

    [28]

    Czakó G, Shuai Q, Liu K P, Bowman J M 2010 J. Chem. Phys. 133 131101Google Scholar

    [29]

    Zhang W, Zhou Y, Wu G, Lu Y, Pan H, Fu B, Shuai Q, Liu L, Liu S, Zhang L, Jiang B, Dai D, Lee S Y, Xie Z, Braams B J, Bowman J M, Collins M A, Zhang D H, Yang X 2010 Proc. Natl. Acad. Sci. 107 12782Google Scholar

    [30]

    Zhou Y, Fu B N, Wang C R, Collins M A, Zhang D H 2011 J. Chem. Phys. 134 064323Google Scholar

    [31]

    Xu X, Chen J, Zhang D H 2014 Chin. J. Chem. Phys. 27 373Google Scholar

    [32]

    Zhou Y, Zhang D H 2014 J. Chem. Phys. 141 194307Google Scholar

    [33]

    Li J, Chen J, Zhao Z, Xie D, Zhang D H, Guo H 2015 J. Chem. Phys. 142 204302Google Scholar

    [34]

    Yang M, Lee S Y, Zhang D H 2007 J. Chem. Phys. 126 064303Google Scholar

    [35]

    Czakó G, Bowman J M 2009 J. Chem. Phys. 131 244302Google Scholar

    [36]

    Czakó G, Bowman J M 2009 J. Am. Chem. Soc. 131 17534Google Scholar

    [37]

    Zhang D H, Light J C 1996 J. Chem. Phys. 104 4544Google Scholar

  • [1] 黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 空化场中大气泡对空化泡振动的抑制效应分析. 物理学报, 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [2] 赵文丽, 孙丰伟, 张红, 王永刚, 高峰, 孟庆田. $ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $反应量子波包动力学研究. 物理学报, 2022, 71(22): 228201. doi: 10.7498/aps.71.20221155
    [3] 袁方园, 朱子亮. D + DBr反应的态-态动力学研究. 物理学报, 2020, 69(11): 113401. doi: 10.7498/aps.69.20200321
    [4] 陈时, 张迪, 王成会, 张引红. 含混合气泡液体中声波共振传播的抑制效应. 物理学报, 2019, 68(7): 074301. doi: 10.7498/aps.68.20182299
    [5] 袁美玲, 李文涛. O++H2 → OH++H反应的动力学研究. 物理学报, 2019, 68(8): 083401. doi: 10.7498/aps.68.20182141
    [6] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应. 物理学报, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [7] 唐晓平, 和小虎, 周灿华, 杨阳. 反应物分子初始振动激发对H+CH+C++H2反应的影响. 物理学报, 2017, 66(12): 123401. doi: 10.7498/aps.66.123401
    [8] 李爽, 李倩, 李佼瑞. Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究. 物理学报, 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [9] 张静, 魏巍, 高守宝, 孟庆田. H+Li2: 一个典型的释能反应体系及其含时动力学研究. 物理学报, 2015, 64(6): 063101. doi: 10.7498/aps.64.063101
    [10] 魏强. 基于4A势能面研究C(3P)+NO(X2)CO(X1+)+N(4S)反应的立体动力学性质. 物理学报, 2015, 64(17): 173401. doi: 10.7498/aps.64.173401
    [11] 沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平. Ga掺杂对ZnO纳米结构可见光发射的抑制效应. 物理学报, 2012, 61(16): 167105. doi: 10.7498/aps.61.167105
    [12] 李金花, 王鹿霞. 光激发下分子纳米结中电荷输运的振动效应研究. 物理学报, 2011, 60(11): 117310. doi: 10.7498/aps.60.117310
    [13] 王小炼, 冯灏, 孙卫国, 樊群超, 王斌, 曾阳阳. 运用球高斯分布极化势研究低能电子与H2 分子碰撞的振动激发动量迁移散射截面. 物理学报, 2011, 60(2): 023401. doi: 10.7498/aps.60.023401
    [14] 王小炼, 冯灏, 孙卫国, 樊群超, 曾阳阳, 王斌. 低能电子与H2分子碰撞振动激发动量迁移散射截面的研究. 物理学报, 2010, 59(2): 937-942. doi: 10.7498/aps.59.937
    [15] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He同位素与H2分子碰撞第二振动激发分波截面的理论研究. 物理学报, 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [16] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [17] 戴 伟, 冯 灏, 孙卫国, 唐永建, 申 立, 于江周. 用振动密耦合方法研究低能电子与N2分子碰撞的振动激发微分散射截面. 物理学报, 2008, 57(1): 143-148. doi: 10.7498/aps.57.143
    [18] 于江周, 冯 灏, 孙卫国. 低能电子与氮分子碰撞振动激发动量迁移截面的研究. 物理学报, 2008, 57(7): 4143-4147. doi: 10.7498/aps.57.4143
    [19] 高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举. 功率超声对Al-Si合金凝固过程中溶质偏析的抑制效应. 物理学报, 2007, 56(2): 1188-1194. doi: 10.7498/aps.56.1188
    [20] 白丽华, 张庆刚, 刘新国. D+CD4→CD3+D2反应的四维量子散射计算. 物理学报, 2003, 52(11): 2774-2780. doi: 10.7498/aps.52.2774
计量
  • 文章访问数:  575
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-21
  • 修回日期:  2024-03-07
  • 上网日期:  2024-03-19
  • 刊出日期:  2024-05-05

/

返回文章
返回