搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络和动力学模拟方法研究高温N2-O2态-态碰撞振动激发和解离过程

郭昌敏 张红 程新路

引用本文:
Citation:

基于神经网络和动力学模拟方法研究高温N2-O2态-态碰撞振动激发和解离过程

郭昌敏, 张红, 程新路

Vibrational excitation and dissociation processes in high-temperature N2-O2 state-to-state collisions based on neural network and dynamic simulation

GUO Changmin, ZHANG Hong, CHENG Xinlu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 散射截面和反应速率系数是阐明分子气体态-态碰撞传能机制的重要参数, 也是进行非平衡气体动力学建模的重要依据. 本文采用动力学模拟中的准经典轨迹方法(QCT)计算了90个不同初始振动态组合的N2(v) + O2(w)碰撞过程, 详细讨论了各个振动激发、解离反应通道的贡献和演变趋势. 研究发现: O2和N2在振动-振动能量交换(VV)通道的贡献比较接近, 振动-平动跃迁(VT)通道主要以O2为主; 总解离截面主要来自O2单解离通道, 交换解离其次, N2单解离和双解离通道的贡献相对较小. 基于QCT数据集, 训练了性能良好的神经网络模型(相关系数R值达到0.99), 可用于预测N2 + O2态-态碰撞的总解离截面. 和仅采用动力学模拟方法相比, 计算成本降低了约91.94%. 在5000—30000 K高温范围内, 给出了VV/VT速率系数的解析表达式.
    The scattering cross-sections and reaction rate coefficients are crucial parameters for elucidating the energy transfer mechanism of state-to-state collisions between molecular gases and also serve as a fundamental basis for modeling the non-equilibrium flow field. However, the database of kinetic processes related to nitrogen shock flows is still being developed. In this work, a detailed kinetic study of the N2 + O2 collision is carried out by combining the quasi-classical trajectory method (QCT) and neural network model (NN). Firstly, QCT is used to calculate 90 N2(v) + O2(w) processes with various initial vibrational states (v,w), and the contributions of all vibrational excitation and dissociation reaction channels are discussed. The following conclusions are drawn: 1) The contributions of the vibration-vibration (VV) energy exchange channel of O2 and N2 are similar, while the vibration-translational (VT) transition mainly occurs on O2; 2) The total dissociation cross-section primarily results from the O2 single-dissociation channel, followed by the exchange-dissociation channel, with relatively minor contributions from the N2 single- and double-dissociation channels. Then, based on the QCT dataset, a high-performance NN model (R-value of 0.99) is trained to predict the total dissociation cross-section caused by N2(v) + O2(w) collisions. Compared with the method that only uses QCT, the method that jointly uses OCT and NN model can achieve an approximately 91.94% reduction in computational cost. Finally, to facilitate use in kinetic modeling, Arrhenius-type fits for the VV/VT rate coefficients are provided over the temperature range of 5000–30000 K, and an exponential form related to the translational energy Et is used to fit the total dissociation cross-section.
  • 图 1  VV过程(1, 0) → (0, 1) (a) 和VT过程(1, 0) → (0, 0) (b)的速率系数作为平动温度的函数: 我们的计算结果(黑色实线)与已报道的理论数据[25,39]对比

    Fig. 1.  Rate coefficients for the VV process (1, 0) → (0, 1) (a) and VT process (1, 0) → (0, 0) (b) as a function of translational temperature: comparison between our calculated results (in solid black line) and reported theoretical data[25,39].

    图 2  N2(v) + O2(10), N2(v) + O2(21)和N2(v) + O2(30)过程中VVN和VVO单量子跃迁截面随初始能级(v)和初始平动能(Et)的等值线图

    Fig. 2.  Contour map of VVN and VVO single-quantum transition cross sections with the initial energy level (v) and initial translational energy (Et) of N2(v) + O2(10), N2(v) + O2(21) and N2(v) + O2(30) processes.

    图 3  N2(v) + O2(10), N2(v) + O2(21)和N2(v) + O2(30)过程中VTN和VTO单量子跃迁截面随N2初始能级(v)和初始平动能(Et)的等值线图

    Fig. 3.  Contour map of VTN and VTO single-quantum transition cross sections with the initial energy level (v) and initial translational energy (Et) of N2(v) + O2(10), N2(v) + O2(21) and N2(v) + O2(30) processes.

    图 4  不同N2(v)-O2(w)碰撞过程中单量子和多量子VVO和VTO速率系数的温度依赖性

    Fig. 4.  Temperature dependence of single- and multi-quantum VVO and VTO rate coefficients during different N2(v)-O2(w) collisions.

    图 5  各个解离通道的反应截面随N2初始振动能级(v)和初始平动能(Et)的等值线图

    Fig. 5.  Contour map of reaction cross sections of each dissociation channel with N2 initial vibrational energy level (v) and initial translational energy (Et).

    图 6  各个解离通道的反应截面随O2初始振动能级(w)和初始平动能(Et)的等值线图

    Fig. 6.  Contour map of reaction cross sections of each dissociation channel with O2 initial vibrational energy level (w) and initial translational energy (Et).

    图 7  (a) NN-totaldiss模型预测值和QCT原始值对比; (b) NN预测值与原始QCT数据之间的误差直方图, 虚线表示误差为零

    Fig. 7.  (a) Comparison of NN-totaldiss predicted data and the raw QCT data; (b) error histogram between the predicted values and the raw QCT data. The black dash line indicates zero error.

    图 8  QCT计算的(左)和NN-totaldiss模型预测的(右)总解离截面随初始平动能(Et)以及O2和N2初始振动能级的等值线图

    Fig. 8.  Contour map of QCT calculated (left) and NN-totaldiss predicted (right) total dissociation cross sections with initial translational energy (Et) and the initial vibrational levels of O2 and N2.

    表 1  QCT数据集包含的N2(v) + O2(w)碰撞过程

    Table 1.  N2(v) + O2(w) collision processes contained in the QCT dataset.

    Group N2(v) O2(w) Et (eV)
    1 {0, 5, 10, 21, 30} {0, 1, 3, 7, 10, 15, 21, 25, 30} {0.2, 0.6, 1, 2,
    3, 4, 5, 6,
    7, 8, 9, 10}
    2 {0, 1, 3, 7,
    10, 15, 21, 25,
    30, 35}
    {0, 5, 10,
    21, 30}
    下载: 导出CSV

    表 A1  VV/VT反应速率系数(单位: k/(cm3·s–1))的Arrhenius拟合参数表(A, n, B). MSE是均方误差(单位: k/(cm3·s–1)), 温度范围为5000—30000 K

    Table A1.  Arrhenius fitting parameters (A, n, B) for VV/VT reaction rate coefficient (unit: k/(cm3·s–1)). MSE is the mean square error (unit: k/(cm3·s–1)), and the temperature range is 5000–30000 K.

    N2(v) + O2(w) → N2(v') + O2(w') A n B MSE
    (0, 10) → (1, 9) 4.10 × 10–10 –2.91 × 10–1 4.81 × 104 4.27 × 10–26
    (0, 10) → (0, 9) 2.44 × 10–10 4.28 × 10–2 2.01 × 104 7.67 × 10–22
    (0, 10) → (0, 8) 3.33 × 10–10 –6.70 × 10–2 3.10 × 104 3.04 × 10–23
    (0, 10) → (0, 7) 3.95 × 10–10 –1.39 × 10–1 3.96 × 104 2.66 × 10–24
    (0, 21) → (1, 20) 4.24 × 10–10 –4.58 × 10–1 –4.53 × 103 4.21 × 10–23
    (0, 21) → (0, 20) 3.50 × 10–10 2.04 × 10–1 2.78 × 103 7.96 × 10–21
    (0, 21) → (0, 19) 2.51 × 10–10 –3.01 × 10–2 1.94 × 104 2.32 × 10–22
    (0, 21) → (0, 18) 2.87 × 10–10 –7.43 × 10–2 2.46 × 104 5.62 × 10–23
    (0, 30) → (1, 29) 3.01 × 10–10 –3.75 × 10–1 4.79 × 104 6.99 × 10–27
    (0, 30) → (0, 29) 1.39 × 10–10 9.46 × 10–2 7.06 × 103 6.44 × 10–21
    (0, 30) → (0, 28) 1.49 × 10–10 2.78 × 10–3 9.00 × 103 9.18 × 10–22
    (0, 30) → (0, 27) 1.74 × 10–10 –5.01 × 10–2 1.14 × 104 2.99 × 10–22
    (15, 10) → (16, 9) 2.31 × 10–10 –9.11 × 10–2 1.73 × 104 8.85 × 10–23
    (15, 10) → (17, 8) 3.46 × 10–10 –2.77 × 10–1 3.64 × 104 2.77 × 10–25
    (15, 10) → (18, 7) 3.94 × 10–10 –3.69 × 10–1 4.36 × 104 1.97 × 10–26
    (15, 10) → (15, 9) 1.97 × 10–10 5.51 × 10–3 1.30 × 104 8.14 × 10–22
    (15, 10) → (15, 8) 2.78 × 10–10 –1.96 × 10–1 2.58 × 104 4.40 × 10–24
    (15, 10) → (15, 7) 3.17 × 10–10 –3.04 × 10–1 3.38 × 104 2.16 × 10–25
    (15, 21) → (16, 20) 1.79 × 10–10 –2.61 × 10–2 1.56 × 104 2.42 × 10–22
    (15, 21) → (17, 19) 2.69 × 10–10 –3.02 × 10–1 2.64 × 104 5.21 × 10–25
    (15, 21) → (18, 18) 3.12 × 10–10 –3.82 × 10–1 3.60 × 104 3.42 × 10–26
    (15, 21) → (15, 20) 1.96 × 10–10 7.64 × 10–2 1.35 × 104 2.82 × 10–21
    (15, 21) → (15, 19) 2.46 × 10–10 –1.03 × 10–1 2.19 × 104 3.80 × 10–23
    (15, 21) → (15, 18) 2.07 × 10–10 –1.88 × 10–1 2.49 × 104 3.33 × 10–24
    (15, 30) → (16, 29) 9.24 × 10–11 –8.39 × 10–2 1.39 × 103 3.39 × 10–22
    (15, 30) → (17, 28) 2.05 × 10–10 –3.47 × 10–1 2.70 × 104 1.23 × 10–25
    (15, 30) → (18, 27) 3.20 × 10–10 –4.66 × 10–1 3.90 × 104 4.67 × 10–27
    (15, 30) → (15, 29) 1.17 × 10–10 1.13 × 10–1 4.53 × 103 1.04 × 10–20
    (15, 30) → (15, 28) 1.57 × 10–10 –1.67 × 10–2 1.10 × 104 5.05 × 10–22
    (15, 30) → (15, 27) 5.12 × 10–10 –2.19 × 10–1 1.17 × 104 1.06 × 10–22
    (35, 10) → (36, 9) 5.68 × 10–10 –5.32 × 10–2 3.17 × 103 1.51 × 10–20
    (35, 10) → (37, 8) 1.30 × 10–9 –2.97 × 10–1 6.01 × 103 4.83 × 10–22
    (35, 10) → (38, 7) 4.10 × 10–10 –3.94 × 10–1 6.35 × 103 7.64 × 10–24
    (35, 10) → (35, 9) 2.01 × 10–10 –6.83 × 10–2 1.58 × 104 1.33 × 10–22
    (35, 10) → (35, 8) 1.98 × 10–10 –2.33 × 10–1 1.85 × 104 3.73 × 10–24
    (35, 10) → (35, 7) 1.88 × 10–10 –3.31 × 10–1 2.17 × 104 3.19 × 10–25
    (35, 21) → (36, 20) 1.79 × 10–10 –2.60 × 10–2 1.56 × 104 2.42 × 10–22
    (35, 21) → (37, 19) 2.69 × 10–10 –3.02 × 10–1 2.64 × 104 5.21 × 10–25
    (35, 21) → (38, 18) 3.12 × 10–10 –3.82 × 10–1 3.60 × 104 3.4 × 10–26
    (35, 21) → (35, 20) 1.96 × 10–10 7.64 × 10–2 1.35 × 104 2.82 × 10–21
    (35, 21) → (35, 19) 2.46 × 10–10 –1.03 × 10–1 2.19 × 104 3.80 × 10–23
    (35, 21) → (35, 18) 2.07 × 10–10 –1.88 × 10–1 2.49 × 104 3.33 × 10–24
    (35, 30) → (36, 29) 5.99 × 10–10 –8.87 × 10–2 1.96 × 103 1.15 × 10–20
    (35, 30) → (37, 28) 4.54 × 10–10 –2.35 × 10–1 3.14 × 103 3.48 × 10–22
    (35, 30) → (38, 27) 9.69 × 10–11 –2.38 × 10–1 5.53 × 103 9.00 × 10–24
    (35, 30) → (35, 29) 6.49 × 10–11 1.25 × 10–1 3.21 × 103 5.24 × 10–21
    (35, 30) → (35, 28) 1.25 × 10–10 –9.18 × 10–2 1.26 × 104 6.00 × 10–23
    (35, 30) → (35, 27) 1.61 × 10–10 –2.35 × 10–1 1.59 × 104 3.84 × 10–24
    下载: 导出CSV

    表 A2  总解离截面(单位: Å2)的拟合参数表(a, b, c). 初始平动能Et范围为0.2—10 eV, RMSE是均方根误差(单位: Å2)

    Table A2.  Fitting parameters (a, b, c) of total dissociation cross-section (unit: Å2). The range of initial translational energy Et is 0.2–10 eV, and RMSE is root mean square error (unit: Å2).

    N2(v) O2(w) a b c RMSE
    0 1 1.98 × 101 –1.02 × 102 9.03 × 100 1.82 × 10–4
    0 3 1.13 × 101 –5.82 × 101 5.11 × 100 3.54 × 10–4
    0 5 8.29 × 100 –4.30 × 101 3.87 × 100 2.95 × 10–3
    0 7 6.43 × 100 –3.35 × 101 3.14 × 100 8.48 × 10–3
    0 10 –2.46 × 102 3.52 × 101 –9.70 × 10–1 5.70 × 10–3
    0 15 –9.18 × 101 1.06 × 101 2.57 × 10–1 8.02 × 10–3
    0 21 –2.04 × 101 2.24 × 10–1 8.60 × 10–1 3.37 × 10–2
    0 25 –5.67 × 100 –1.11 × 100 1.01 × 100 6.37 × 10–2
    0 30 –6.06 × 10–1 –5.62 × 10–1 1.10 × 100 1.30 × 10–1
    1 21 –2.03 × 101 3.57 × 10–1 8.50 × 10–1 2.33 × 10–2
    1 30 –7.54 × 10–1 –4.60 × 10–1 1.09 × 100 1.58 × 10–1
    3 15 –7.75 × 101 8.74 × 100 3.16 × 10–1 1.44 × 10–2
    3 21 –2.10 × 101 1.02 × 100 7.94 × 10–1 4.72 × 10–2
    3 30 –8.40 × 10–1 –3.81 × 10–1 1.09 × 100 1.73 × 10–1
    5 30 –8.07 × 10–1 –3.74 × 10–1 1.09 × 100 1.94 × 10–1
    5 0 8.27 × 100 –4.28 × 101 3.65 × 100 6.98 × 10–3
    5 1 8.21 × 100 –4.25 × 101 3.75 × 100 3.78 × 10–3
    5 3 7.21 × 100 –3.75 × 101 3.44 × 100 6.53 × 10–3
    5 7 –3.96 × 102 6.61 × 101 –2.62 × 100 1.60 × 10–3
    5 10 –2.83 × 102 4.83 × 101 –1.81 × 100 5.40 × 10–3
    5 15 –7.95 × 101 9.94 × 100 2.43 × 10–1 2.80 × 10–2
    5 21 –1.95 × 101 8.26 × 10–1 8.08 × 10–1 3.42 × 10–2
    5 25 –6.46 × 100 –4.60 × 10–1 9.66 × 10–1 6.22 × 10–2
    7 15 –6.79 × 101 8.41 × 100 2.93 × 10–1 2.57 × 10–2
    7 21 –1.85 × 101 6.82 × 10–1 8.22 × 10–1 3.75 × 10–2
    7 30 –7.52 × 101 –3.87 × 10–1 1.09 × 100 2.02 × 10–1
    10 15 –6.21 × 101 7.99 × 100 3.14 × 10–1 3.16 × 10–2
    10 21 –1.75 × 101 7.87 × 10–1 8.16 × 10–1 4.21 × 10–2
    10 30 –6.64 × 10–1 –4.20 × 10–1 1.09 × 100 2.00 × 10–1
    15 0 3.92 × 100 –2.04 × 101 2.03 × 100 1.68 × 10–2
    15 3 3.21 × 100 –1.68 × 101 1.83 × 100 4.68 × 10–2
    15 7 –1.97 × 102 3.56 × 101 –1.29 × 100 2.32 × 10–2
    15 10 –1.12 × 102 1.78 × 101 –2.20 × 10–1 3.96 × 10–2
    15 15 –4.74 × 101 5.30 × 100 5.20 × 10–1 3.20 × 10–2
    15 21 –1.20 × 101 –4.00 × 10–1 9.19 × 10–1 5.88 × 10–2
    15 25 –5.0 × 100 –5.65 × 10–1 9.88 × 10–1 3.51 × 10–2
    15 30 –6.92 × 10–1 –3.97 × 10–1 1.09 × 100 1.50 × 10–1
    18 21 –1.16 × 101 –2.55 × 10–1 9.34 × 10–1 5.33 × 10–2
    21 15 –3.44 × 101 4.04 × 100 6.22 × 10–1 4.97 × 10–2
    21 0 –7.70 × 101 5.01 × 100 5.89 × 10–1 1.06 × 10–2
    21 1 –7.61 × 101 5.57 × 100 5.54 × 10–1 7.48 × 10–3
    21 3 –8.50 × 101 9.82 × 100 2.65 × 10–1 1.68 × 10–2
    21 7 –6.54 × 101 7.75 × 100 3.69 × 10–1 2.71 × 10–2
    21 10 –4.66 × 101 4.61 × 100 5.73 × 10–1 1.65 × 10–2
    21 18 –1.81 × 101 8.87 × 10–1 8.42 × 10–1 6.70 × 10–2
    21 21 –1.09 × 101 8.07 × 10–2 9.19 × 10–1 5.56 × 10–2
    21 25 –3.91 × 100 –8.38 × 10–1 1.04 × 100 6.94 × 10–2
    21 27 –2.07 × 100 –7.80 × 10–1 1.07 × 100 6.97 × 10–2
    21 30 –4.61 × 10–1 –5.58 × 10–1 1.12 × 100 1.79 × 10–1
    27 21 –6.79 × 100 –4.70 × 10–1 1.02 × 100 8.37 × 10–2
    30 15 –9.22 × 100 –3.68 × 10–1 9.65 × 10–1 1.25 × 10–1
    30 21 –4.34 × 100 –9.02 × 10–1 1.08 × 100 1.40 × 10–1
    30 30 1.01 × 10–1 –8.90 × 10–1 1.23 × 100 3.85 × 10–1
    35 21 –2.49 × 100 –8.65 × 10–1 1.13 × 100 1.79 × 10–1
    35 5 –1.15 × 101 5.75 × 10–1 8.62 × 10–1 5.73 × 10–2
    35 10 –8.09 × 100 –4.55 × 10–2 9.44 × 10–1 7.15 × 10–2
    35 30 1.06 × 10–1 –8.47 × 10–1 1.29 × 100 5.14 × 10–1
    下载: 导出CSV
  • [1]

    王庆洋, 丛堃林, 刘丽丽, 陆宏志, 徐胜金 2017 气体物理 2 46

    Wang Q Y, Cong K L, Liu L L, Lu H Z, Xu S J 2017 Phys. Gases 2 46

    [2]

    吕达仁, 陈泽宇, 郭霞, 田文寿 2009 力学进展 39 674Google Scholar

    Lu D R, Chen Z Y, Guo X, Tian W S 2009 Adv. Mech. 39 674Google Scholar

    [3]

    董维中, 丁明松, 高铁锁, 江涛 2013 空气动力学学报 31 692

    Dong W Z, DIing M S, Gao T S, Jiang T 2013 Acta Aerodyn. Sin. 31 692

    [4]

    国义军, 曾磊, 张昊元, 代光月, 王安龄, 邱波, 周述光, 刘骁 2017 空气动力学学报 35 496Google Scholar

    Guo Y J, Zeng L, Zhang H Y, Dai G Y, Wang A L, Qiu B, Zhou S G, Liu X 2017 Acta Aerodyn. Sin. 35 496Google Scholar

    [5]

    Cacciatore M 1996 Mol. Phys. Hypersonic Flows 482 21

    [6]

    Pavlov A V 2011 Geomag. Aeron. 51 143Google Scholar

    [7]

    Treanor C E 1965 J. Chem. Phys. 43 532Google Scholar

    [8]

    Nagnibeda E, Papina K, Kunova O 2018 AIP Conf. Proc. 1 060012

    [9]

    Laux C O, Pierrot L, Gessman R J 2012 Chem. Phys. 398 46Google Scholar

    [10]

    Zhao X, Xu X, Xu H 2024 J. Chem. Phys. 161 231101Google Scholar

    [11]

    Hong Q, Bartolomei M, Pirani F, Sun Q, Coletti C 2025 J. Chem. Phys. 162 114308Google Scholar

    [12]

    Feng D, Song Y, Wang Z, Yang L, Zhang Z, Yang Y 2025 J. Chem. Phys. 162 114107Google Scholar

    [13]

    He D, Liu T, Li R, Hong Q, Li F, Sun Q, Si T, Luo X 2024 J. Chem. Phys. 161 244302Google Scholar

    [14]

    Andrienko D, Boyd I D 2017 55th AIAA Aerospace Sciences Meeting Grapevine Texas, January 9-13, 2017 p0659

    [15]

    Kurnosov A K, Napartovich A P, Shnyrev S L, Cacciatore M 2010 Plasma Sources Sci. Technol. 19 045015Google Scholar

    [16]

    Esposito F, Garcia E, Laganà A 2017 Plasma Sources Sci. Technol. 26 045005Google Scholar

    [17]

    Lino Da Silva M, Loureiro J, Guerra V 2012 Chem. Phys. Lett. 531 28Google Scholar

    [18]

    Varga Z, Meana-Pañeda R, Song G, Paukku Y, Truhlar D G 2016 J. Chem. Phys. 144 024310Google Scholar

    [19]

    Garcia E, Verdasco J E, Laganà A 2020 J. Phys. Chem. A 124 6445Google Scholar

    [20]

    Andrienko D A, Boyd I D 2018 J. Chem. Phys. 148 084309Google Scholar

    [21]

    Garcia E, Pirani F, Laganà A, Martí C 2017 Phys. Chem. Chem. Phys. 19 11206Google Scholar

    [22]

    Garcia E, Laganà A, Pirani F, Bartolomei M, Cacciatore M, Kurnosov A 2016 J. Phys. Chem. A 120 5208Google Scholar

    [23]

    Billing G D and Jolicard G 1982 Chem. Phys. 65 323Google Scholar

    [24]

    Billing G D 1994 Chem. Phys. 179 463Google Scholar

    [25]

    Garcia E, Kurnosov A, Laganà A, Pirani F, Bartolomei M, Cacciatore M 2016 J. Phys. Chem. B 120 1476Google Scholar

    [26]

    Koner D, Unke O T, Boe K, Bemish R J, Meuwly M 2019 J. Chem. Phys. 150 211101Google Scholar

    [27]

    Chen J, Li J, Bowman J M, Guo H 2020 J. Chem. Phys. 153 054310Google Scholar

    [28]

    Hong Q, Storchi L, Bartolomei M, Pirani F, Sun Q, Coletti C 2023 Eur. Phys. J. D 77 128Google Scholar

    [29]

    Gu K M, Zhang H, Cheng X L 2023 J. Chem. Phys. 158 244302Google Scholar

    [30]

    Huang X, Gu K M, Guo C M, Cheng X L 2023 Phys. Chem. Chem. Phys. 25 29475Google Scholar

    [31]

    Guo C M, Zhang H, Cheng X L 2024 J. Phys. Chem. A 128 5435Google Scholar

    [32]

    Bernstein R B, Bederson B 1980 Phys. Today 33 79

    [33]

    Fernández-Ramos A, Miller J A, Klippenstein S J, Truhlar D G 2006 Chem. Rev. 106 4518Google Scholar

    [34]

    Hu X, Hase W L, Pirraglia T 1991 J. Comput. Chem. 12 1014Google Scholar

    [35]

    Gutzwiller M C 1990 Chaos in classical and quantum mechanics (Berlin: Springer

    [36]

    Chaudhry R S, Bender J D, Valentini P, Schwartzentruber T E, Candler G V 2016 46th AIAA Thermophysics Conference Washington, June 13-17, 2016 p4319

    [37]

    Mankodi T K, Bhandarkar U V, Myong R S 2020 Phys. Fluids 32 036102Google Scholar

    [38]

    Andrienko D, Boyd I D 2017 47th AIAA Thermophysics Conference Denver, Colorado, June 5-9, 2017 p3163

    [39]

    Andrienko D, Boyd I D 2018 J. Thermophys. Heat Transfer 32 904Google Scholar

    [40]

    Rumelhart D E, Hintont G E, Williams R J 1986 Nature 323 6088

    [41]

    Moré J J 1978 Numerical Analysis (Berlin, Heidelberg: Springer-Verlag) p105

    [42]

    Chaudhry R S, Candler G V 2019 AIAA Scitech Forum San Diego, California, January 7-11, 2019 p0789

    [43]

    Mankodi T K, Bhandarkar U V, Puranik B P 2018 J. Chem. Phys. 148 144305Google Scholar

  • [1] 周勇. F+CHD3→HF+CD3反应C—H伸缩振动激发的量子动力学研究. 物理学报, doi: 10.7498/aps.73.20231832
    [2] 杨莹, 曹怀信. 量子混合态的两种神经网络表示. 物理学报, doi: 10.7498/aps.72.20221905
    [3] 魏强. 基于4A势能面研究C(3P)+NO(X2)CO(X1+)+N(4S)反应的立体动力学性质. 物理学报, doi: 10.7498/aps.64.173401
    [4] 胡梅, 刘新国, 谭瑞山. 碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响. 物理学报, doi: 10.7498/aps.63.023402
    [5] 瞿定荣, 范凤英, 宋增云. 光化学反应中氩气对激发态锂原子猝灭速率研究. 物理学报, doi: 10.7498/aps.63.032801
    [6] 王小炼, 冯灏, 孙卫国, 樊群超, 王斌, 曾阳阳. 运用球高斯分布极化势研究低能电子与H2 分子碰撞的振动激发动量迁移散射截面. 物理学报, doi: 10.7498/aps.60.023401
    [7] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, doi: 10.7498/aps.59.7815
    [8] 王小炼, 冯灏, 孙卫国, 樊群超, 曾阳阳, 王斌. 低能电子与H2分子碰撞振动激发动量迁移散射截面的研究. 物理学报, doi: 10.7498/aps.59.937
    [9] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He同位素与H2分子碰撞第二振动激发分波截面的理论研究. 物理学报, doi: 10.7498/aps.58.3827
    [10] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, doi: 10.7498/aps.58.6932
    [11] 戴 伟, 冯 灏, 孙卫国, 唐永建, 申 立, 于江周. 用振动密耦合方法研究低能电子与N2分子碰撞的振动激发微分散射截面. 物理学报, doi: 10.7498/aps.57.143
    [12] 于江周, 冯 灏, 孙卫国. 低能电子与氮分子碰撞振动激发动量迁移截面的研究. 物理学报, doi: 10.7498/aps.57.4143
    [13] 俞阿龙. 基于小波神经网络的振动速度传感器幅频特性补偿研究. 物理学报, doi: 10.7498/aps.56.3166
    [14] 郑敦胜, 郭锡坤. 高激发振动态氰化氢分子的解离研究. 物理学报, doi: 10.7498/aps.53.3347
    [15] 谭 文, 王耀南, 周少武, 刘祖润. 混沌时间序列的模糊神经网络预测. 物理学报, doi: 10.7498/aps.52.795
    [16] 王宏霞, 虞厥邦. 细胞神经网络平衡态的稳定性分析. 物理学报, doi: 10.7498/aps.50.2303
    [17] 方泉玉, 蔡 蔚, 邹 宇, 李 萍. 推广Bethe公式:Au50+离子的偶极激发的碰撞强度和速率系数. 物理学报, doi: 10.7498/aps.47.1612
    [18] 方泉玉, 蔡蔚, 沈智军, 邹宇, 李萍, 徐元光. 电子与类锂离子碰撞激发截面和速率系数. 物理学报, doi: 10.7498/aps.45.1641
    [19] 马余强, 张玥明, 龚昌德. Hopfield神经网络模型的恢复特性. 物理学报, doi: 10.7498/aps.42.1356
    [20] 倪光炯. 介子态的对振动模型. 物理学报, doi: 10.7498/aps.25.336
计量
  • 文章访问数:  260
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-23
  • 修回日期:  2025-05-23
  • 上网日期:  2025-06-06

/

返回文章
返回