搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光加速低能碳离子束在CHO泡沫中的电荷转移过程

程渝 任洁茹 马步博 刘云 赵子乾 魏文青 Dieter H. H.Hoffmann 邓志刚 齐伟 周维民 程锐 李忠良 宋磊 李源 赵永涛

引用本文:
Citation:

激光加速低能碳离子束在CHO泡沫中的电荷转移过程

程渝, 任洁茹, 马步博, 刘云, 赵子乾, 魏文青, Dieter H. H.Hoffmann, 邓志刚, 齐伟, 周维民, 程锐, 李忠良, 宋磊, 李源, 赵永涛

Charge transfer process of laser-accelerated low-energy carbon ion beams in porous CHO foams

CHENG Yu, REN Jieru, MA Bubo, LIU Yun, ZHAO Ziqian, WEI Wenqing, H. H Hoffmann, DENG Zhigang, QI Wei, ZHOU Weimin, CHENG Rui, LI Zhongliang, SONG Lei, LI Yuan, ZHAO Yongtao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 离子与物质相互作用中的电荷转移过程研究对于离子束驱动高能量密度物理、材料离子辐照损伤、离子束电荷剥离技术等领域至关重要. 本文利用激光驱动靶背鞘层场加速机制产生了能量在数MeV量级的碳离子束, 测量了碳离子束穿过具有孔状结构的C9H16O8泡沫靶后的电荷态分布. 实验结果与理论对比发现, 只有同时考虑了电离、俘获、激发和退激等过程的速率方程结果与实验符合很好. 采用气体靶截面数据求解速率方程获得的平衡电荷态低估了实验值, 原因在于泡沫结构靶中固态纤维丝引起的靶密度效应导致离子电荷态升高. 当离子能量高于3 MeV以上时, 实验值与采用了固态靶截面数据的速率方程理论预期一致; 但在低能区出现明显偏差, 原因在于当入射能量小于3 MeV时, 离子激发态寿命小于碰撞时间尺度, 激发态电子在发生第二次碰撞之前退激发回到基态, 靶密度效应减弱, 平均电荷态降低, 实验结果与详细考虑了激发和退激过程的ETACHA程序预期吻合. 该工作为理解离子束与物质相互作用微观机制以及电荷转移模型检验提供了数据和参考.
    Charge transfer processes in ion-matter interactions are crucial for ion beam-driven high-energy density physics, material irradiation damage, and charge state stripping in accelerator techniques. Here we generate carbon ion beams in the MeV energy range through target normal sheath acceleration (TNSA) mechanism, and measure the average charge state of 1.5–4.5 MeV carbon ion beams passing through porous C9H16O8 foam with a volume density of 2 mg/cm3. The measured average charge states are compared with the average equilibrium charge-states predicted by semi-empirical formula and rate equation. The results show that the predictions from the rate equation that fully considers the ionization, capture, excitation, and de-excitation processes are in good agreement with experimental results. The prediction from the rate equation by using gas target cross-section data underestimates the experimental data, because the target density effect caused by the solid fiber filaments in the foam-structured target increases the ionization probability through frequent collisions, reduces the electron capture probability, and thus leads to an enhancement of ion charge states. In the projectile energy range above 3 MeV, the experimental data agree with the predictions from the rate equation using solid-target cross-section data. However, a significant deviation emerges in the energy region below 3 MeV due to the fact that in this energy range, the lifetime of ion excited states is shorter than the collisional time scale. In this case, excited electrons have time to de-excite the ground state before the second collision occurs. Consequently, the target density effects are weakened, and the charge states are reduced. The experimental results agree well with predictions from the ETACHA code that considers excitation and de-excitation processes in detail. This work provides the data and references for better understanding ion-matter interactions and distinguishing various charge exchange models.
  • 图 1  皮秒激光聚焦在铜箔上, 通过TNSA机制产生强流碳离子束. 使用与IP耦合的双通道TPS记录穿过泡沫靶和空靶的碳离子能谱

    Fig. 1.  Experimental setup. A picosecond laser is focused onto a copper foil, generating an intense carbon ion beam through the TNSA mechanism. The energy spectra of carbon ions passing through the foam target and the empty hole are measured with a dual-channel TPS coupled to the IP.

    图 2  激光加速的碳离子分布 (a) 穿过空靶的能谱分布; (b) 穿过泡沫靶的能谱分布; (c) 穿过空靶的电荷分布; (d) 穿过泡沫靶的电荷分布

    Fig. 2.  Carbon ions distribution of laser-accelerated: (a) The energy spectra of passing through without target; (b) the energy spectra of passing through foam target; (c) charge state distribution of passing through without foam; (d) charge state distribution of passing through foam target.

    图 3  碳离子穿过泡沫靶前后的平均电荷态实验值

    Fig. 3.  Experimental data of average charge state of carbon ions before and after passing foam target.

    图 4  测量的平均电荷态与理论预测值的比较 (a)与半经验模型比较; (b)与通过求解速率方程得出的预测值的比较. 实验数据是两发次的平均值, 其中能量误差为TPS对各电荷态碳离子能量分辨的最小值, 电荷态误差源于实验统计误差和发次抖动误差

    Fig. 4.  Comparison of measured average charge states with theoretical predictions: (a) The comparison with semiempirical models; (b) the comparison with predictions through solving rate equations. The experimental data are averaged over two shots, the error bars of energy represent the energy resolution of the TPS for the ion species that has the lowest resolution, the error bars of the average charge state originate from the statistical errors and shot-to-shot fluctuations

    图 5  碳离子激发态寿命(红线)及碰撞时间尺度(黑线)与能量的关系, 其中激发态寿命的数据引自文献[50]

    Fig. 5.  Carbon ion excited state lifetime (red line) and collision time scale (black line) versus energy. Results for excited state lifetime are taken from Ref.[50].

  • [1]

    Shima K, Kuno N, Yamanouchi M 1989 Phys. Rev. A 40 3557Google Scholar

    [2]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D H H 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [3]

    Rothard H, Grandin J P, Jung M, Clouvas A, Rozet J P, Wünsch R 1997 Nucl. Instrum. Methods Phys. Res. Sect. B 132 359Google Scholar

    [4]

    Betz H D 1972 Rev. Mod. Phys. 44 465Google Scholar

    [5]

    Deutsch C, Maynard G 2016 Matter Radiat. Extremes 1 277Google Scholar

    [6]

    Gao J, Hu Z, Wu Y, Wang J, Sisourat N, Dubois A 2021 Matter Radiat. Extremes 6 014404Google Scholar

    [7]

    Erb W 1978 GSI Report GSI-P-78 (Darmstadt

    [8]

    Ali R, Beiersdorfer P, Harris C L, Neill P A 2016 Phys. Rev. A 93 012711Google Scholar

    [9]

    Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022 Chin. Phys. B 31 093401Google Scholar

    [10]

    Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar

    [11]

    Hofmann I 2018 Matter Radiat. Extremes 3 1Google Scholar

    [12]

    Zhao Q, Cao S C, Liu M, Sheng X K, Wang Y R, Zong Y, Zhang X M, Jing Y, Cheng R, Zhao Y T, Zhang Z M, Du Y C, Gai W 2016 Nucl. Instrum. Methods Phys. Res. Sect. A 832 144Google Scholar

    [13]

    Zhao Y, Zhang Z, Gai W, Du Y, Cao S, Qiu J, Zhao Q, Cheng R, Zhou X, Ren J, Huang W, Tang C, Xu H, Zhan W 2016 Laser Part. Beams 34 338Google Scholar

    [14]

    Zhao Y T, Rui Cheng R, Wang Y Y, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R, Sheng L N, Zhang Z M, Xiao G Q 2014 High Power Laser Science and Engineering. 2 e39Google Scholar

    [15]

    Bohr N 1941 Phys. Rev. 59 270Google Scholar

    [16]

    Anthony J M, Lanford W A 1892 Phys. Rev. A 25 1868

    [17]

    Ziegler J F, Biersack J P 1985 Treatise on Heavy - Ion Science 6 93

    [18]

    Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 23 82Google Scholar

    [19]

    Nikolaev V S, Dmitriev I S 1968 Phys. Lett. A 28 277Google Scholar

    [20]

    Brown M D, Moak C D 1972 Phys. Rev. B 6 90Google Scholar

    [21]

    Shima K, Ishihara T, Mikumo T 1982 Nucl. Instrum. Methods Phys. Res. 200 605Google Scholar

    [22]

    To K X, Drouin R 1976 Phys. Scr. 14 277Google Scholar

    [23]

    Schiwietz G, Grande P L 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 175 125

    [24]

    Basko M M 1984 Sov. J. Plasma Phys. 10 689

    [25]

    Northcliffe L C 1960 Phys. Rev. 120 1744Google Scholar

    [26]

    Gauthier M, Chen S N, Levy A, Audebert P, Blancard C, Ceccotti T, Cerchez M, Doria D, Floquet V, Lamour E, Peth C, Romagnani L, Rozet J P, Scheinder M, Shepherd R, Toncian T, Vernhet D, Willi O, Borghesi M, Faussurier G, Fuchs J 2013 Phys. Rev. Lett. 110 135003Google Scholar

    [27]

    Tolstikhina I Y, Shevelko V P 2018 Phys. - Usp. 61 247Google Scholar

    [28]

    Lassen N O 1951 Kgl. Danske Vidensk. Selskab. Math. - Fys. Medd. 26 5

    [29]

    Bohr N, Lindhard J 1954 Kgl. Danske Vidensk. Selskab. Math. - Fys. Medd. 28 7

    [30]

    Shevelko V P, Rosmej O, Tawara H, Tolstikhina I Y 2004 J. Phys. B: At. Mol. Opt. Phys. 37 201Google Scholar

    [31]

    Shevelko V P, Tawara H, Ivanov O V, Miyoshi T, Noda K, Sato Y, Subbotin A V, Tolstikhina I Y 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2675Google Scholar

    [32]

    Kistler S S 1931 Nature 127 741

    [33]

    Rosmej O N, Suslov N, Martsovenko D, Vergunova G, Borisenko N, Orlov N, Rienecker T, Klir D, Rezack K, Orekhov A, Borisenko L, Krousky E, Pfeifer M, Dudzak R, Maeder R, Schaechinger M, Schoenlein A, Zaehter S, Jacoby J, Limpouch J, Ullschmied J, Zhidkov N 2015 Plasma Phys. Control. Fusion 57 094001Google Scholar

    [34]

    Ren J R, Deng Z G, Qi W, Chen B Z, Ma B B, Wang X, Yin S, Feng J H, Liu W, Xu Z F, Hoffmann D H H, Wang S Y, Fan Q P, Cui B, He S K, Cao Z R, Zhao Z Q, Cao L F, Gu Y Q, Zhu S P, Cheng R, Zhou X M, Xiao G Q, H W, Zhang Y H, Zhang Z, Li Y T, Wu D, Zhou W M, Zhao Y T 2020 Nat. Commu. 11 5157Google Scholar

    [35]

    Ma B B, Ren J R, Wang S Y, Hoffmann D H H, Deng Z G, Qi W, Wang X, Yin S, Feng J H, Fan Q P, Liu W, Xu Z F, Chen Y, Cui B, He S K, Cao Z R, Zhao Z Q, Gu Y Q, Zhu S P, Cheng R, Zhou X M, Xiao G Q, Zhao H W, Zhang Y H, Zhang Z, Li Y T, Xu X, Wei W Q, Chen B Z, Zhang S Z, Hu Z M, Liu L R, Li F F, Xu H, Zhou W M, Cao L F, Zhao Y T 2021 Astrophys. J. 920 106Google Scholar

    [36]

    Renner O, Klimo O, Krus K, Nicolaï P, Poletaeva A, Bukharskii N, Tikhonchuk V T 2025 Matter Radiat. Extremes 10 037403Google Scholar

    [37]

    Braenzel J, Andreev A A, Platonov K, Klingsporn K, Ehrentraut L, Sandner W, Schnürer M 2015 Phys. Rev. Lett. 114 124801Google Scholar

    [38]

    Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter V J, Tajima T, Nickles P V, Sandner W, Habs D 2009 Phys. Rev. Lett. 103 245003Google Scholar

    [39]

    Braenzel J, Barriga-Carrasco M D, Morales R, Schnürer M 2018 Phys. Rev. Lett. 120 184801Google Scholar

    [40]

    朱军高, 卢海洋, 赵媛, 赖美福, 古永力, 徐世祥, 周沧涛 2022 物理学报 71 194102Google Scholar

    Zhu J G, Lu H Y, Zhao Y, Lai M F, Gu Y L, Xu S X, Zhou C T 2022 Acta Phys. Sin. 71 194102Google Scholar

    [41]

    Zhao S A, Lin C, Chen J E, Ma W J, Wang J J, Yan X Q 2016 Chin. Phys. Lett. 33 035202Google Scholar

    [42]

    Ren J R, Ma B B, Liu L R, Wei W Q, Chen B Z, Zhang S Z, Xu H, Hu Z M, Li F F, Wang X, Yin S, Feng J H, Zhou X M, Gao Y F, Li Y, Shi X H, Li J X, Ren X G, Xu Z F, Deng Z G, Qi W, Wang S Y, Fan Q P, Cui B, Wang W W, Yuan Z Q, Teng J, Wu Y C, Cao Z R, Zhao Z Q, Gu Y Q, Cao L F, Zhu S P, Cheng R, Lei Y, Wang Z, Zhou Z X, Xiao G Q, Zhao H W, Hoffmann D H H, Zhou W M, Zhao Y T 2023 Phys. Rev. Lett. 130 095101Google Scholar

    [43]

    Ma B B, Ren J R, Liu L R, Wei W Q, Chen B Z, Zhang S Z, Xu H, Hu Z M, Li F F, Wang X, Li W X, Li Q Y, Yin S, Feng J H, Zhou X M, Gao Y F, Li Y, Shi X H, Li J X, Ren X G, Xu Z F, Deng Z G, Qi W, Wang S Y, Fan Q P, Cui B, Wang W W, Yuan Z Q, Teng J, Wu Y C, Cao Z R, Zhao Z Q, Gu Y Q, Cao L F, Zhu S P, Cheng R, Lei Y, Wang Z, Zhou Z X, Xiao G Q, Zhao H W, Hoffmann D H H, Zhou W M, Zhao Y T 2024 Phys. Rev. A 109 042810Google Scholar

    [44]

    Hattass M, Schenkel T, Hamza A V, Barnes A V, Newman M W, McDonald J W, Niedermayr T R, Machicoane G A, Schneider D H 1999 Phys. Rev. Lett. 82 4795Google Scholar

    [45]

    Charge changing cross sections code, Novikov N V http://cdfe.sinp.msu.ru/services/cccc/htm/ [2024-7-28]

    [46]

    Novikov N V, Teplova Y A 2014 Phys. Lett. A 378 1286Google Scholar

    [47]

    Rozet J P, Stephan C, Vemhet D 1996 Nucl. Instrum. Methods Phys. Res. Sect. B 107 67Google Scholar

    [48]

    Tarasov O B, Bazin D 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 4657Google Scholar

    [49]

    Lamour E, Fainstein P D, Galassi M, Prigent C, Ramirez C A, Rivarola R D, Rozet J P, Trassinelli M, Vernhet D 2015 Phys. Rev. A 92 042703Google Scholar

    [50]

    Soumaya, Manai, Salhi D E, Nasr S B, Jelassi H 2022 Res. Phys. 37 105487

  • [1] 梁雅琼, 梁贵云. 基于ACE观测数据的太阳风电荷交换X射线辐射因子. 物理学报, doi: 10.7498/aps.74.20241603
    [2] 张崇瑞, 何文亮, 曹世权, 颉录有, 董晨钟. 碳离子穿过氢等离子体的电荷态演化理论研究. 物理学报, doi: 10.7498/aps.74.20250668
    [3] 朱军高, 卢海洋, 赵媛, 赖美福, 古永力, 徐世祥, 周沧涛. 面向激光驱动质子束应用的弱聚焦磁场束线设计研究. 物理学报, doi: 10.7498/aps.71.20220599
    [4] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验. 物理学报, doi: 10.7498/aps.70.20201685
    [5] 张晓辉, 董克攻, 华剑飞, 朱斌, 谭放, 吴玉迟, 鲁巍, 谷渝秋. 相对论皮秒激光在低密度等离子体中直接加速的电子束的横向分布特征研究. 物理学报, doi: 10.7498/aps.68.20191106
    [6] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, doi: 10.7498/aps.66.184101
    [7] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽. 物理学报, doi: 10.7498/aps.60.075201
    [8] 黄仕华, 吴锋民. 外加静电场的聚焦激光脉冲真空加速电子方案. 物理学报, doi: 10.7498/aps.57.7680
    [9] 陈 民, 盛政明, 郑 君, 张 杰. 强激光与高密度气体相互作用中电子和离子加速的数值模拟. 物理学报, doi: 10.7498/aps.55.2381
    [10] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束辐照靶材烧蚀效应二维数值研究. 物理学报, doi: 10.7498/aps.55.398
    [11] 杨朝文, 缪竞威, 王广林, 刘晓东, 师勉恭. MeV氢微团簇离子与固体介质的电荷交换. 物理学报, doi: 10.7498/aps.55.5810
    [12] 吴 迪, 宫 野, 刘金远, 王晓钢. 强流脉冲离子束与靶作用域值的研究. 物理学报, doi: 10.7498/aps.54.1636
    [13] 华剑飞, 霍裕昆, 林郁正, 陈 钊, 谢永杰, 张绍银, 阎 峥, 徐俊杰. 电子在超短激光脉冲修正场中的动力学特性研究. 物理学报, doi: 10.7498/aps.54.653
    [14] 白 龙, 翁甲强, 方锦清, 罗晓曙. 强流离子束离子径向密度分布的模拟研究. 物理学报, doi: 10.7498/aps.53.4126
    [15] 杨百方, 缪竞威, 杨朝文, 师勉恭, 唐阿友, 刘晓东. H3+团簇离子与固体相互作用. 物理学报, doi: 10.7498/aps.51.55
    [16] 廖梅勇, 张键辉, 秦复光, 刘志凯, 杨少延, 王占国, 李述汤. 质量分离低能离子束沉积碳膜及离子轰击效应. 物理学报, doi: 10.7498/aps.49.2186
    [17] 王炎森, 潘立民, 黄发泱, 方渡飞, 汤家镛, 杨福家. 铯离子/原子与金属表面电荷交换的计算. 物理学报, doi: 10.7498/aps.43.1950
    [18] 王友年, 马腾才, 宫野. 重离子束在热靶中的电子阻止本领与有效电荷数. 物理学报, doi: 10.7498/aps.42.631
    [19] 李福利. 用负温度高能离子束的相对论多普勒效应实现从红外到X射线连续调谐激光器. 物理学报, doi: 10.7498/aps.29.429
    [20] 申青鹤, 蒋崧生, 顾以藩. 迥旋加速器离子束的脈冲调制. 物理学报, doi: 10.7498/aps.16.94
计量
  • 文章访问数:  175
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-15
  • 修回日期:  2025-06-18
  • 上网日期:  2025-07-08

/

返回文章
返回