-
离子与物质相互作用中的电荷转移过程研究对于离子束驱动高能量密度物理、材料离子辐照损伤、离子束电荷剥离技术等领域至关重要.本文利用激光驱动靶背鞘层场加速机制产生了能量在数MeV量级的碳离子束,测量了碳离子束穿过具有孔状结构的C9H16O8泡沫靶后的电荷态分布.实验结果与理论对比发现,只有同时考虑了电离、俘获、激发和退激等过程的速率方程结果与实验符合很好.采用气体靶截面数据求解速率方程获得的平衡电荷态低估了实验值,原因在于泡沫结构靶中固态纤维丝引起的靶密度效应导致离子电荷态升高.当离子能量高于3 MeV以上时,实验值与采用了固态靶截面数据的速率方程理论预期一致,但在低能区出现明显偏差,原因在于当入射能量小于3 MeV时,离子激发态寿命小于碰撞时间尺度,激发态电子在发生第二次碰撞之前退激发回到基态,靶密度效应减弱,平均电荷态降低,实验结果与详细考虑了激发和退激过程的ETACHA程序预期吻合.该工作为理解离子束与物质相互作用微观机制以及电荷转移模型检验提供了数据和参考.Charge transfer processes in ion-matter interactions are crucial for ion beam-driven high-energy density physics, materials irradiation damage and charge state stripping in accelerator techniques. Here we generated carbon ion beams with energies in the MeV energy range through TNSA (target normal sheath acceleration) mechanism, and measured the average charge state of 1.5 ~ 4.5 MeV carbon ion beams passing through porous C9H16O8 foam with 2 mg/cm3 volume density. The measured average charge states are compared with various semi-empirical formula and rate equation-predicted equilibrated average charge state. The results show that the rate equation predictions fully considering the ionization, capture, excitation, and de-excitation processes are in good agreement with experiment. The rate equation prediction using gas target cross-section data underestimated the experimental data, because the target density effects caused by the solid fiber filaments in foam-structured target increases the ionization probability through frequent collisions and decrease the electron capture probability, which leads to an enhancement of ion charge states. In the projectile energy range above 3 MeV, the experimental data agree with rate equation predictions employing solid-target cross-section data. However, a significant deviation emerges in the energy region below 3 MeV due to the fact that in this energy regime, the lifetime of ion excited states is shorter than the collisional time scale. In this case, excited electrons have time to de-excite to the ground state before the second collision occurs. Consequently, the target density effects are weakened, and the charge states was reduced. The experimental results agree well with predictions from the ETACHA code, which considers excitation and de-excitation processes in detail. This work provides data and references to better understand the ion-matter interactions and to discriminate the various charge exchange models.
-
Keywords:
- Laser acceleration /
- Carbon ion beam /
- Charge transfer /
- Target density effects
-
[1] Shima K, Kuno N, Yamanouchi M 1989Phys. Rev. A 40 3557
[2] Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D H H 2021Phys. Rev. Lett. 126 115001
[3] Rothard H, Grandin J P, Jung M, Clouvas A, Rozet J P, Wünsch R 1997Nucl. Instrum. Methods Phys. Res. Sect. B 132 359
[4] Betz H D 1972Rev. Mod. Phys. 44 465
[5] Deutsch C, Maynard G 2016Matter Radiat. Extremes 1 277
[6] Gao J, Hu Z, Wu Y, Wang J, Sisourat N, Dubois A 2021Matter Radiat. Extremes 6 014404
[7] Erb W GSI Report GSI-P-78 1978 Darmstadt
[8] Ali R, Beiersdorfer P, Harris C L, Neill P A 2016Phys. Rev. A 93 012711
[9] Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022Chin. Phys. B 31 093401
[10] Kawata S, Karino T, Ogoyski A I 2016Matter Radiat. Extremes 1 89
[11] Hofmann I 2018Matter Radiat. Extremes 3 1
[12] Zhao Q, Cao S C, Liu M, Sheng X K, Wang Y R, Zong Y, Zhang X M, Jing Y, Cheng R, Zhao Y T, Zhang Z M, Du Y C, Gai W 2016Nucl. Instrum. Methods Phys. Res. Sect. A 832 144
[13] Zhao Y, Zhang Z, Gai W, Du Y, Cao S, Qiu J, Zhao Q, Cheng R, Zhou X, Ren J, Huang W, Tang C, Xu H, Zhan W 2016Laser Part. Beams 34 338
[14] Zhao Y T, Rui Cheng R, Wang Y Y, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R, Sheng L N, Zhang Z M, Xiao G Q 2014High Power Laser Science and Engineering. 2 e39
[15] Bohr N 1941Phys. Rev. 59 270
[16] Anthony J M, Lanford W A 1892Phys. Rev. A 25 1868
[17] Ziegler J F, Biersack J P 1985Treatise on Heavy - Ion Science 6 93
[18] Kreussler S, Varelas C, Brandt W 1981Phys. Rev. B 23 82
[19] Nikolaev V S, Dmitriev I S 1968Phys. Lett. A 28 277
[20] Brown M D, Moak C D 1972Phys. Rev. B 6 90
[21] Shima K, Ishihara T, Mikumo T 1982Nucl. Instrum. Methods Phys. Res. 200 605
[22] To K X, Drouin R 1976Phys. Scr. 14 277
[23] Schiwietz G, Grande P L 2001Nucl. Instrum. Methods Phys. Res. Sect. B 175 125
[24] Basko M M 1984Sov. J. Plasma Phys. 10 689
[25] Northcliffe L C 1960Phys. Rev. 120 1744
[26] Gauthier M, Chen S N, Levy A, Audebert P, Blancard C, Ceccotti T, Cerchez M, Doria D, Floquet V, Lamour E, Peth C, Romagnani L, Rozet J P, Scheinder M, Shepherd R, Toncian T, Vernhet D, Willi O, Borghesi M, Faussurier G, Fuchs J 2013Phys. Rev. Lett. 110 135003
[27] Tolstikhina I Y, Shevelko V P 2018Phys. - Usp. 61 247
[28] Lassen N O 1951Kgl. Danske Vidensk. Selskab. Math. - Fys. Medd. 26 5
[29] Bohr N, Lindhard J 1954Kgl. Danske Vidensk. Selskab. Math. - Fys. Medd. 28 7
[30] Shevelko V P, Rosmej O, Tawara H, Tolstikhina I Y 2004J. Phys. B: At. Mol. Opt. Phys. 37 201
[31] Shevelko V P, Tawara H, Ivanov O V, Miyoshi T, Noda K, Sato Y, Subbotin A V, Tolstikhina I Y 2005J. Phys. B: At. Mol. Opt. Phys. 38 2675
[32] Kistler S S 1931Nature 127 741
[33] Rosmej O N, Suslov N, Martsovenko D, Vergunova G, Borisenko N, Orlov N, Rienecker T, Klir D, Rezack K, Orekhov A, Borisenko L, Krousky E, Pfeifer M, Dudzak R, Maeder R, Schaechinger M, Schoenlein A, Zaehter S, Jacoby J, Limpouch J, Ullschmied J, Zhidkov N 2015Plasma Phys. Control. Fusion 57 094001
[34] Ren J R, Deng Z G, Qi W, Chen B Z, Ma B B, Wang X, Yin S, Feng J H, Liu W, Xu Z F, Hoffmann D H H, Wang S Y, Fan Q P, Cui B, He S K, Cao Z R, Zhao Z Q, Cao L F, Gu Y Q, Zhu S P, Cheng R, Zhou X M, Xiao G Q, H W, Zhang Y H, Zhang Z, Li Y T, Wu D, Zhou W M, Zhao Y T 2020Nat. Commu. 11 5157
[35] Ma B B, Ren J R, Wang S Y, Hoffmann D H H, Deng Z G, Qi W, Wang X, Yin S, Feng J H, Fan Q P, Liu W, Xu Z F, Chen Y, Cui B, He S K, Cao Z R, Zhao Z Q, Gu Y Q, Zhu S P, Cheng R, Zhou X M, Xiao G Q, Zhao H W, Zhang Y H, Zhang Z, Li Y T, Xu X, Wei W Q, Chen B Z, Zhang S Z, Hu Z M, Liu L R, Li F F, Xu H, Zhou W M, Cao L F, Zhao Y T 2021Astrophys. J. 920 106
[36] Renner O, Klimo O, Krus K, Nicolaï P, Poletaeva A, Bukharskii N, Tikhonchuk V T 2025Matter Radiat. Extremes 10 037403
[37] Braenzel J, Andreev A A, Platonov K, Klingsporn K, Ehrentraut L, Sandner W, Schnürer M 2015Phys. Rev. Lett.114 124801
[38] Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter V J, Tajima T, Nickles P V, Sandner W, Habs D 2009Phys. Rev. Lett. 103 245003
[39] Braenzel J, Barriga-Carrasco M D, Morales R, Schnürer M 2018Phys. Rev. Lett. 120 184801
[40] Zhu Jun-Gao, Lu Hai-Yang, Zhao Yuan, Lai Mei-Fu, Gu Yong-Li, Xu Shi-Xiang, Zhou Cang-Tao 2022Acta Phys. Sin. 71 194102(in Chinese) [朱军高,卢海洋,赵媛,赖美福,古永力,徐世祥,周沧涛2022物理学报71 194102]
[41] Shuan Zhao, Chen Lin, Jia-Er Chen, Wen-Jun Ma, Jun-Jie Wang, Xue-Qing Yan 2016Chin. Phys. Lett. 33 035202
[42] Ren J R, Ma B B, Liu L R, Wei W Q, Chen B Z, Zhang S Z, Xu H, Hu Z M, Li F F, Wang X, Yin S, Feng J H, Zhou X M, Gao Y F, Li Y, Shi X H, Li J X, Ren X G, Xu Z F, Deng Z G, Qi W, Wang S Y, Fan Q P, Cui B, Wang W W, Yuan Z Q, Teng J, Wu Y C, Cao Z R, Zhao Z Q, Gu Y Q, Cao L F, Zhu S P, Cheng R, Lei Y, Wang Z, Zhou Z X, Xiao G Q, Zhao H W, Hoffmann D H H, Zhou W M, Zhao Y T 2023Phys. Rev. Lett. 130 095101
[43] Ma B B, Ren J R, Liu L R, Wei W Q, Chen B Z, Zhang S Z, Xu H, Hu Z M, Li F F, Wang X, Li W X, Li Q Y, Yin S, Feng J H, Zhou X M, Gao Y F, Li Y, Shi X H, Li J X, Ren X G, Xu Z F, Deng Z G, Qi W, Wang S Y, Fan Q P, Cui B, Wang W W, Yuan Z Q, Teng J, Wu Y C, Cao Z R, Zhao Z Q, Gu Y Q, Cao L F, Zhu S P, Cheng R, Lei Y, Wang Z, Zhou Z X, Xiao G Q, Zhao H W, Hoffmann D H H, Zhou W M, Zhao Y T 2024Phys. Rev. A 109 042810
[44] Hattass M, Schenkel T, Hamza A V, Barnes A V, Newman M W, McDonald J W, Niedermayr T R, Machicoane G A, Schneider D H 1999Phys. Rev. Lett. 82 4795
[45] Charge changing cross sections code, Novikov N V http://cdfe.sinp.msu.ru/services/cccc/htm/ [2024-7-28]
[46] Novikov N V, Teplova Y A 2014Phys. Lett. A 378 1286
[47] Rozet J P, Stephan C, Vemhet D 1996Nucl. Instrum. Methods Phys. Res. Sect. B 107 67
[48] Tarasov O B, Bazin D 2008Nucl. Instrum. Methods Phys. Res. Sect. B 266 4657
[49] Lamour E, Fainstein P D, Galassi M, Prigent C, Ramirez C A, Rivarola R D, Rozet J P, Trassinelli M, Vernhet D 2015Phys. Rev. A 92 042703
[50] Soumaya, Manai, Salhi D E, Nasr S B, Jelassi H 2022Results Phys. 37 105487
计量
- 文章访问数: 22
- PDF下载量: 3
- 被引次数: 0