-
本文基于截面模型系统研究了碳离子与氢等离子体相互作用的电荷态演化行为。首先探究了在碳离子入射能为1 keV/u 100 MeV/u、氢等离子体的电子温度为kTe=1-1000eV范围内引入“shift”麦克斯韦速率分布对双电子复合速率系数影响的规律,首次给出该体系下的速率系数数据。在此基础上具体求解了在炮弹碳离子的能量为0.5 MeV/u、等离子体自由电子温度为kTe=3和8eV、电子密度为Ne=1018-1020cm-3的情况下包含各种电离及复合过程的平衡速率方程,给出了碳离子穿过氢等离子体的非平衡和平衡电荷态丰度随等离子体厚度的演化关系,揭示了等离子体状态(温度、密度),炮弹离子能量及初始电荷态对炮弹离子电荷态演化的调控机制。进一步,通过对比碳离子在氢等离子体与中性气体(氢气)中的动力学行为差异,阐明了等离子体环境对离子电荷交换的独特影响。本研究将对高能量密度物理领域中离子与等离子体相互作用的动力学演化及能量输运特性的研究具有重要参考作用。This paper systematically investigates the charge state evolution behavior of carbon ions interacting with hydrogen plasma based on a cross-sectional model. First, the study explores the influence of introducing a "shifted" Maxwellian velocity distribution on the dielectronic recombination rate coefficients within the range of carbon ion incident energies from 1 keV/u to 100 MeV/u and hydrogen plasma electron temperatures of kTe=1-1000eV. For the first time, rate coefficient data for this system are provided. Building on this, the research specifically solves the equilibrium rate equations encompassing various ionization and recombination processes for projectile carbon ions with an energy of 0.5 MeV/u, plasma electron temperatures of kTe=3eV and 8eV and electron densities from 1018 to 1020cm-3. The results present the evolution of non-equilibrium and equilibrium charge state abundances of carbon ions penetrating hydrogen plasma as a function of plasma thickness, revealing the regulatory mechanisms of plasma conditions (temperature and density), projectile ion energy, and initial charge state on the charge state evolution of the ions. Furthermore, by comparing the dynamic behaviors of carbon ions in hydrogen plasma and neutral gas (hydrogen), the unique effects of the plasma environment on ion charge exchange are elucidated. The mean equilibrium charge state of projectile ions exhibits a positive correlation with electron temperature but a negative correlation with electron density. Of particular significance, the calculated equilibrium charge states in hydrogen gas targets are markedly lower than those in plasma environments. As the initial charge state of projectile ions approaches its equilibrium value, the equilibrium thicknesses for all charge states demonstrate a decreasing trend, accompanied by a corresponding reduction in the mean equilibrium thickness. This phenomenon has been consistently verified in both plasma and gas targets, with the mean equilibrium thickness values in gas targets being significantly smaller than those in plasma environments. Most importantly, when the initial charge state of projectile ions exceeds the equilibrium value, these ions display more pronounced energy loss characteristics in non-equilibrium regions. This study will serve as an important reference for research on the dynamic evolution and energy transport characteristics of ion-plasma interactions in the field of high-energy-density physics.
-
Keywords:
- Effective charge /
- Charge exchange /
- Dielectronic recombination /
- Charge-state distribution
-
[1] Bohr N 1913Phil. Mag 25 10
[2] Bohr N 1915Phil. Mag 30 581
[3] Rutherford E 1911Philos. Mag 21 669
[4] Bethe H A 1930Ann. Phys 5 325
[5] Bloch F 1933Ann. Phys 16 287
[6] Olsen J N, Mehlhorn T A, Maenchen J, Johnson D J 1985J. Appl. Phys 582958
[7] Young F C, Mosher D, Stephanakis S J, Goldstein Shyke A 1982Phys. Rev. Lett 49 549
[8] Mehlhorn D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990Phys. Rev. A 42 2313
[9] Koshkarev D G 2002Laser Part. Beams 20 595
[10] Dietrich K G, Hoffmann D H H, Boggasch E, Jacoby J, Wahl H, Elfers M, Haas C R, Dubenkov V P, Golubev A A 1992Phys. Rev. Lett 69 3623
[11] Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch C, Maynard G 1990Laser Part. Beam 8 575
[12] Lindhard J, Winther A 1964Mat.-Fys. Medd. K. Dan. Vidensk. Selsk 34 1
[13] Andersen H H, Ziegler J F 1977Stopping and Ranges of Ions in Matter (Elmsford, NY:Pergamon)
[14] Sigmund P 2006Particle Penetration and Radiation Effects (Berlin:Springer)
[15] Nardi E, Zinamon Z 1982Phys. Rev. Lett 49 1251
[16] Peter T, Meyer-ter-Vehn J 1991Phys. Rev. A 43 2015
[17] Scheidenberger C, Stoehlker T, Meyerhof W E, Geissel H, Mokler P H, Blank B 1998Nucl. Instrum. Methods Phys. Res. B 142 441
[18] Rozet J P, Stephan C, Vernhet D 1996Nucl. Instr. Methods B 107 67
[19] Trubnikov B 1965Rev. Mod. Plasma Phys 1 105
[20] Skupsky S 1977 Phys. Rev. A 16 727
[21] Li C K, Petrasso R D 1993Phys. Rev. Lett 70 3059
[22] Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972Nature 239139
[23] Kawata S, Karino T, Ogoyski A I 2016Matter Radiat. Extrem 1 89
[24] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994Phys. Plasmas 1 1626
[25] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro E, Bulanov S V, Campbell E M, Perry M D, Powell H 2001Phys. Rev. Lett 86 436
[26] Sharkov B Y, Hoffmann D H H, Golubev A A, Zhao Y T 2016Matter Radiat. Extrem 1 28
[27] Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020Sci. Sin.-Phys. Mech. Astron 50 155(in Chinese)[程锐,张晟,申国栋,陈燕红,张延师,陈良文,张子民,赵全堂,杨建成,王瑜玉,雷瑜,林平,杨杰,杨磊,马新文,肖国青,赵红卫,詹文龙2020中国科学:物理学力学天文学50155]
[28] Tolstikhina I Y, Imai M, Winckler N, Shevelko V P 2018Basic Atomic Interactions of Accelerated Heavy Ions in Matter (Berlin:Springer-Verlag GmbH)
[29] Tolstikhina I Y, Andreev S N, Vainshtein L A, Shevelko V P 2020J. Quant. Spectrosc. Radiat. Transfer 246106944
[30] Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R, Haas R, Kunze H, Bimbot R, Gardes D, Rivet M F, Deutsch C, Fleurier C 1990Nucl. Instrum. Methods Phys. Res. Sect. A 278 52
[31] Gardés D, Servajean A, Jubica B, Fleurier C, Hong D, Deutsch C, Maynard D 1992Phys. Rev. A 46 5101
[32] Gardés D, Bimbot R, Rivet M F, Servajean A, Fleurier C, Hong D, Deutsch C, Maynard G 1992Particle Accelerators 37 361
[33] Couillaud C, Deicas R, Nardin P, Beuve M A, Guihaumé J M, Renaud R, Cukier M, Deutsch C, Maynard G 1994Phys. Rev. E 49 1545
[34] Jacoby J, Hoffmann D H H, Laux W, Muller R W, Wahl H, Weyrich K, Boggasch E, Heimrich B, Stockl C, Wetzler C, Miyamoto C 1995Phys. Rev. Lett 74 1550
[35] Kojima M, Mitomo M, Sasaki T, Hasegawa J, Ogawa M 2002Laser Part. Beams 20 475
[36] Skobelev N K, Kalpakchieva R, Astabatyan R A, Vincour J, Kulko A A, Lobastov S P, Lukyanov S M, Markaryan E R, Maslov V A, Sobolev Y H, Ugryumov V Y 2005Nucl. Instrum. Methods Phys. Res. Sect. B 227 471
[37] Frank A, Blazevicé, Bagnoud V, Basko M M, Borner M, Cayzac W, Kraus D, Hessling T, Hoffmann D H H, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz A, Roth M 2013Phys. Rev. Lett 110 115001
[38] Gauthier M, Chen S N, Levy A, Audebert P, Blancard C, Ceccotti T, Cerchez M, Doria D, Floquet V, Lamour E, Peth C, Romagnani L, Rozet J P, Scheinder M, Shepherd R, Toncian T, Vernhet D, Willi O, Borghesi M, Faussurier G, Fuchs J 2013Phys. Rev. Lett 110 135003
[39] Nardi E, Zinamon Z 1982Phys. Rev. Lett 49 1251
[40] Peter T, Arnold R, Meyer-ter-Vehn J 1986Phys. Rev. Lett 57 1859
[41] Frank A, Blažević, A, Grande P L, Harres K, Heßling T, Hoffmann D H H, Knobloch-Maas R, Kuznetsov P G, Nürnberg F, Pelka A, Schaumann G, Schiwietz G, Schökel A, Schollmeier M, Schumacher D, Schütrumpf J, Vatulin V V, Vinokurov O A, Roth M 2010Phys. Rev. E 81 115001
[42] Ortner A, Frank A, Blažević A, Roth M 2015Phys. Rev. E 91 023104
[43] Cayzac W, Bagnoud V, Basko M M, Blažević A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz A, Vorberger J, Roth M 2015Phys. Rev. E 92 053109
[44] Betz H 1972Rev. Mod. Phys 44 465
[45] Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 2382
[46] Gus'kov S Yu, Zmitrenko N V, Ⅱ' in D V, Levkovskii A A, Rozanov V B, Sherman V E 2010Plasma Phys. Rep 35 709
[47] Morales R, Barriga Carrasco M D, Casas D 2017Phys. Plasmas 24042703
[48] Shevelko V P, Andreev S N, Tolstikhina I Y 2021Nucl. Instrum. Methods Phys. Res. Sect. B 502 37
[49] Tolstikhina I Y, Shevelko V P 2023Matter Radiat. Extrem 8 23
[50] Novikov N V, Teplova Ya A 2021J.Surf.Invest.:X-ray,Synch.Neut.Tech 15 248
[51] Betz H D 1983Heavy Ion Charge States (New York:Academic Press)
[52] Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005High Energy Density Phys 1 3
[53] Gu M F, 2008Can. J. Phys 86 675
计量
- 文章访问数: 39
- PDF下载量: 2
- 被引次数: 0