搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳离子穿过氢等离子体的电荷态演化理论研究

张崇瑞 何文亮 曹世权 颉录有 董晨钟

引用本文:
Citation:

碳离子穿过氢等离子体的电荷态演化理论研究

张崇瑞, 何文亮, 曹世权, 颉录有, 董晨钟

Theoretical Study on Charge-State Evolution of Carbon Ions Penetrating Hydrogen Plasma

ZHANG Chongrui, HE Wenliang, CAO Shiquan, Xie Luyou, Dong Chenzhong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文基于截面模型系统研究了碳离子与氢等离子体相互作用的电荷态演化行为。首先探究了在碳离子入射能为1 keV/u 100 MeV/u、氢等离子体的电子温度为kTe=1-1000eV范围内引入“shift”麦克斯韦速率分布对双电子复合速率系数影响的规律,首次给出该体系下的速率系数数据。在此基础上具体求解了在炮弹碳离子的能量为0.5 MeV/u、等离子体自由电子温度为kTe=3和8eV、电子密度为Ne=1018-1020cm-3的情况下包含各种电离及复合过程的平衡速率方程,给出了碳离子穿过氢等离子体的非平衡和平衡电荷态丰度随等离子体厚度的演化关系,揭示了等离子体状态(温度、密度),炮弹离子能量及初始电荷态对炮弹离子电荷态演化的调控机制。进一步,通过对比碳离子在氢等离子体与中性气体(氢气)中的动力学行为差异,阐明了等离子体环境对离子电荷交换的独特影响。本研究将对高能量密度物理领域中离子与等离子体相互作用的动力学演化及能量输运特性的研究具有重要参考作用。
    This paper systematically investigates the charge state evolution behavior of carbon ions interacting with hydrogen plasma based on a cross-sectional model. First, the study explores the influence of introducing a "shifted" Maxwellian velocity distribution on the dielectronic recombination rate coefficients within the range of carbon ion incident energies from 1 keV/u to 100 MeV/u and hydrogen plasma electron temperatures of kTe=1-1000eV. For the first time, rate coefficient data for this system are provided. Building on this, the research specifically solves the equilibrium rate equations encompassing various ionization and recombination processes for projectile carbon ions with an energy of 0.5 MeV/u, plasma electron temperatures of kTe=3eV and 8eV and electron densities from 1018 to 1020cm-3. The results present the evolution of non-equilibrium and equilibrium charge state abundances of carbon ions penetrating hydrogen plasma as a function of plasma thickness, revealing the regulatory mechanisms of plasma conditions (temperature and density), projectile ion energy, and initial charge state on the charge state evolution of the ions. Furthermore, by comparing the dynamic behaviors of carbon ions in hydrogen plasma and neutral gas (hydrogen), the unique effects of the plasma environment on ion charge exchange are elucidated. The mean equilibrium charge state of projectile ions exhibits a positive correlation with electron temperature but a negative correlation with electron density. Of particular significance, the calculated equilibrium charge states in hydrogen gas targets are markedly lower than those in plasma environments. As the initial charge state of projectile ions approaches its equilibrium value, the equilibrium thicknesses for all charge states demonstrate a decreasing trend, accompanied by a corresponding reduction in the mean equilibrium thickness. This phenomenon has been consistently verified in both plasma and gas targets, with the mean equilibrium thickness values in gas targets being significantly smaller than those in plasma environments. Most importantly, when the initial charge state of projectile ions exceeds the equilibrium value, these ions display more pronounced energy loss characteristics in non-equilibrium regions. This study will serve as an important reference for research on the dynamic evolution and energy transport characteristics of ion-plasma interactions in the field of high-energy-density physics.
  • [1]

    Bohr N 1913Phil. Mag 25 10

    [2]

    Bohr N 1915Phil. Mag 30 581

    [3]

    Rutherford E 1911Philos. Mag 21 669

    [4]

    Bethe H A 1930Ann. Phys 5 325

    [5]

    Bloch F 1933Ann. Phys 16 287

    [6]

    Olsen J N, Mehlhorn T A, Maenchen J, Johnson D J 1985J. Appl. Phys 582958

    [7]

    Young F C, Mosher D, Stephanakis S J, Goldstein Shyke A 1982Phys. Rev. Lett 49 549

    [8]

    Mehlhorn D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990Phys. Rev. A 42 2313

    [9]

    Koshkarev D G 2002Laser Part. Beams 20 595

    [10]

    Dietrich K G, Hoffmann D H H, Boggasch E, Jacoby J, Wahl H, Elfers M, Haas C R, Dubenkov V P, Golubev A A 1992Phys. Rev. Lett 69 3623

    [11]

    Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch C, Maynard G 1990Laser Part. Beam 8 575

    [12]

    Lindhard J, Winther A 1964Mat.-Fys. Medd. K. Dan. Vidensk. Selsk 34 1

    [13]

    Andersen H H, Ziegler J F 1977Stopping and Ranges of Ions in Matter (Elmsford, NY:Pergamon)

    [14]

    Sigmund P 2006Particle Penetration and Radiation Effects (Berlin:Springer)

    [15]

    Nardi E, Zinamon Z 1982Phys. Rev. Lett 49 1251

    [16]

    Peter T, Meyer-ter-Vehn J 1991Phys. Rev. A 43 2015

    [17]

    Scheidenberger C, Stoehlker T, Meyerhof W E, Geissel H, Mokler P H, Blank B 1998Nucl. Instrum. Methods Phys. Res. B 142 441

    [18]

    Rozet J P, Stephan C, Vernhet D 1996Nucl. Instr. Methods B 107 67

    [19]

    Trubnikov B 1965Rev. Mod. Plasma Phys 1 105

    [20]

    Skupsky S 1977 Phys. Rev. A 16 727

    [21]

    Li C K, Petrasso R D 1993Phys. Rev. Lett 70 3059

    [22]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972Nature 239139

    [23]

    Kawata S, Karino T, Ogoyski A I 2016Matter Radiat. Extrem 1 89

    [24]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994Phys. Plasmas 1 1626

    [25]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro E, Bulanov S V, Campbell E M, Perry M D, Powell H 2001Phys. Rev. Lett 86 436

    [26]

    Sharkov B Y, Hoffmann D H H, Golubev A A, Zhao Y T 2016Matter Radiat. Extrem 1 28

    [27]

    Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020Sci. Sin.-Phys. Mech. Astron 50 155(in Chinese)[程锐,张晟,申国栋,陈燕红,张延师,陈良文,张子民,赵全堂,杨建成,王瑜玉,雷瑜,林平,杨杰,杨磊,马新文,肖国青,赵红卫,詹文龙2020中国科学:物理学力学天文学50155]

    [28]

    Tolstikhina I Y, Imai M, Winckler N, Shevelko V P 2018Basic Atomic Interactions of Accelerated Heavy Ions in Matter (Berlin:Springer-Verlag GmbH)

    [29]

    Tolstikhina I Y, Andreev S N, Vainshtein L A, Shevelko V P 2020J. Quant. Spectrosc. Radiat. Transfer 246106944

    [30]

    Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R, Haas R, Kunze H, Bimbot R, Gardes D, Rivet M F, Deutsch C, Fleurier C 1990Nucl. Instrum. Methods Phys. Res. Sect. A 278 52

    [31]

    Gardés D, Servajean A, Jubica B, Fleurier C, Hong D, Deutsch C, Maynard D 1992Phys. Rev. A 46 5101

    [32]

    Gardés D, Bimbot R, Rivet M F, Servajean A, Fleurier C, Hong D, Deutsch C, Maynard G 1992Particle Accelerators 37 361

    [33]

    Couillaud C, Deicas R, Nardin P, Beuve M A, Guihaumé J M, Renaud R, Cukier M, Deutsch C, Maynard G 1994Phys. Rev. E 49 1545

    [34]

    Jacoby J, Hoffmann D H H, Laux W, Muller R W, Wahl H, Weyrich K, Boggasch E, Heimrich B, Stockl C, Wetzler C, Miyamoto C 1995Phys. Rev. Lett 74 1550

    [35]

    Kojima M, Mitomo M, Sasaki T, Hasegawa J, Ogawa M 2002Laser Part. Beams 20 475

    [36]

    Skobelev N K, Kalpakchieva R, Astabatyan R A, Vincour J, Kulko A A, Lobastov S P, Lukyanov S M, Markaryan E R, Maslov V A, Sobolev Y H, Ugryumov V Y 2005Nucl. Instrum. Methods Phys. Res. Sect. B 227 471

    [37]

    Frank A, Blazevicé, Bagnoud V, Basko M M, Borner M, Cayzac W, Kraus D, Hessling T, Hoffmann D H H, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz A, Roth M 2013Phys. Rev. Lett 110 115001

    [38]

    Gauthier M, Chen S N, Levy A, Audebert P, Blancard C, Ceccotti T, Cerchez M, Doria D, Floquet V, Lamour E, Peth C, Romagnani L, Rozet J P, Scheinder M, Shepherd R, Toncian T, Vernhet D, Willi O, Borghesi M, Faussurier G, Fuchs J 2013Phys. Rev. Lett 110 135003

    [39]

    Nardi E, Zinamon Z 1982Phys. Rev. Lett 49 1251

    [40]

    Peter T, Arnold R, Meyer-ter-Vehn J 1986Phys. Rev. Lett 57 1859

    [41]

    Frank A, Blažević, A, Grande P L, Harres K, Heßling T, Hoffmann D H H, Knobloch-Maas R, Kuznetsov P G, Nürnberg F, Pelka A, Schaumann G, Schiwietz G, Schökel A, Schollmeier M, Schumacher D, Schütrumpf J, Vatulin V V, Vinokurov O A, Roth M 2010Phys. Rev. E 81 115001

    [42]

    Ortner A, Frank A, Blažević A, Roth M 2015Phys. Rev. E 91 023104

    [43]

    Cayzac W, Bagnoud V, Basko M M, Blažević A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz A, Vorberger J, Roth M 2015Phys. Rev. E 92 053109

    [44]

    Betz H 1972Rev. Mod. Phys 44 465

    [45]

    Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 2382

    [46]

    Gus'kov S Yu, Zmitrenko N V, Ⅱ' in D V, Levkovskii A A, Rozanov V B, Sherman V E 2010Plasma Phys. Rep 35 709

    [47]

    Morales R, Barriga Carrasco M D, Casas D 2017Phys. Plasmas 24042703

    [48]

    Shevelko V P, Andreev S N, Tolstikhina I Y 2021Nucl. Instrum. Methods Phys. Res. Sect. B 502 37

    [49]

    Tolstikhina I Y, Shevelko V P 2023Matter Radiat. Extrem 8 23

    [50]

    Novikov N V, Teplova Ya A 2021J.Surf.Invest.:X-ray,Synch.Neut.Tech 15 248

    [51]

    Betz H D 1983Heavy Ion Charge States (New York:Academic Press)

    [52]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005High Energy Density Phys 1 3

    [53]

    Gu M F, 2008Can. J. Phys 86 675

  • [1] 程渝, 任洁茹, 马步博, 刘云, 赵子乾, 魏文青, Dieter H. H.Hoffmann, 邓志刚, 齐伟, 周维民, 程锐, 李忠良, 宋磊, 李源, 赵永涛. 激光加速低能碳离子束在CHO泡沫中的电荷转移过程. 物理学报, doi: 10.7498/aps.74.20250634
    [2] 梁雅琼, 梁贵云. 基于ACE观测数据的太阳风电荷交换X射线辐射因子. 物理学报, doi: 10.7498/aps.74.20241603
    [3] 黄厚科, 汶伟强, 黄忠魁, 汪书兴, 汤梅堂, 李杰, 冒立军, 袁洋, 万梦宇, 刘畅, 汪寒冰, 周晓鹏, 赵冬梅, 严凯明, 周云斌, 原有进, 杨建成, 张少锋, 朱林繁, 马新文. 基于HIAF开展高电荷态重离子双电子复合谱精密测量的模拟研究. 物理学报, doi: 10.7498/aps.74.20241589
    [4] 邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文. 重离子储存环CSRe上类钠Kr25+离子的双电子复合精密谱学实验研究. 物理学报, doi: 10.7498/aps.73.20240211
    [5] 赵小安, 徐升华, 周宏伟, 孙祉伟. 电解质浓度对胶体粒子表面有效电荷的影响. 物理学报, doi: 10.7498/aps.70.20201472
    [6] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验. 物理学报, doi: 10.7498/aps.70.20201685
    [7] 王林伟, 徐升华, 周宏伟, 孙祉伟, 欧阳文泽, 徐丰. 带电胶体粒子弹性有效电荷测量的理论改进. 物理学报, doi: 10.7498/aps.66.066102
    [8] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, doi: 10.7498/aps.65.027901
    [9] 符彦飙, 王旭东, 苏茂根, 董晨钟. Au34+离子双电子复合过程的理论研究. 物理学报, doi: 10.7498/aps.65.033401
    [10] 杨建会, 范强, 张建平. 类氖等电子系列离子基态的双电子复合速率系数研究. 物理学报, doi: 10.7498/aps.61.193101
    [11] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, doi: 10.7498/aps.59.7815
    [12] 师应龙, 董晨钟, 张登红, 符彦飙. 高离化态Hg和U离子的双电子复合过程的理论研究. 物理学报, doi: 10.7498/aps.57.88
    [13] 张登红, 董晨钟, 颉录有, 丁晓斌, 符彦飙. 类氦离子的KLL双电子复合过程的相对论理论研究. 物理学报, doi: 10.7498/aps.55.112
    [14] 董晨钟, 符彦飙. 高离化态Cu18+离子的双电子复合及共振转移激发过程的理论研究. 物理学报, doi: 10.7498/aps.55.107
    [15] 杨朝文, 缪竞威, 王广林, 刘晓东, 师勉恭. MeV氢微团簇离子与固体介质的电荷交换. 物理学报, doi: 10.7498/aps.55.5810
    [16] 杨百方, 缪竞威, 杨朝文, 师勉恭, 唐阿友, 刘晓东. H3+团簇离子与固体相互作用. 物理学报, doi: 10.7498/aps.51.55
    [17] 易有根, 郑志坚, 颜君, 李萍, 方泉玉, 邱玉波. Au激光等离子体的双电子复合速率系数. 物理学报, doi: 10.7498/aps.51.2740
    [18] 盛勇, 蒋刚, 朱正和. 类氢类氦类锂镁离子双电子复合的旁观电子角动量研究. 物理学报, doi: 10.7498/aps.51.501
    [19] 焦荣珍, 程新路, 杨向东, 朱俊. 类镍Dy38+离子的双电子复合速率研究. 物理学报, doi: 10.7498/aps.51.1755
    [20] 王友年, 马腾才, 宫野. 重离子束在热靶中的电子阻止本领与有效电荷数. 物理学报, doi: 10.7498/aps.42.631
计量
  • 文章访问数:  39
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回