搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重离子储存环CSRe上类钠Kr25+离子的双电子复合精密谱学实验研究

邵林 黄忠魁 汶伟强 汪书兴 黄厚科 马万路 刘畅 汪寒冰 陈冬阳 刘鑫 周晓鹏 赵冬梅 张少锋 朱林繁 马新文

引用本文:
Citation:

重离子储存环CSRe上类钠Kr25+离子的双电子复合精密谱学实验研究

邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文

Dielectronic recombination experiment of Na-like Kr25+ at the heavy ion storage ring CSRe

Shao Lin, Huang Zhong-Kui, Wen Wei-Qiang, Wang Shu-xing, Huang Hou-Ke, Ma Wan-Lu, Liu Chang, Wang Han-Bing, Chen Dong-Yang, Liu Xin, Zhou Xiao-peng, Zhao Dong-mei, Zhang Shao-feng, Zhu Lin-fan, Ma Xin-wen
PDF
导出引用
  • 高电荷态离子的双电子复合精密谱学实验研究,不仅对天体等离子体和聚变等离子体的研究具有重要意义,而且可以作为一种新的精密谱学工具,用来检验强场量子电动力学效应、测量同位素移动及提取原子核电荷半径等。在兰州重离子储存环CSRe上,安装了专门用于电子-离子复合精密谱学实验的电子束能量调制系统,质心系下电子-离子碰撞能量的调制范围达到0~1 keV。在CSRe电子冷却器下游安装了自主研制的塑料闪烁体探测器和多丝正比探测器,用于探测复合离子。在此基础上,使用Kr25+离子在CSRe上进行了首次双电子复合测试实验,实验测量了质心系能量0-70 eV的双电子复合速率系数。为了更好地理解实验测量结果,我们利用FAC(Flexible Atomic Code)程序计算了Kr25+离子的双电子复合速率系数,并与实验做了细致对比,整体符合很好,而且发现3sl(∆n = 1)的共振跃迁对实验谱线有很大的贡献。实验结果表明,CSRe双电子复合实验平台具有非常好的稳定性和可重复性,能够为下一步开展更高电荷态离子的双电子复合精密谱学实验、检验强场量子电动力学效应以及原子核性质精密测量等前沿实验提供支持。
    The experimental study of precision spectroscopy of dielectronic recombination (DR) of highly charged ions is not only important for astronomical plasmas and fusion plasmas, but also can be used as a new precision spectroscopy method to test the strong-field quantum electrodynamic effect, measure isotope shift and extract the radius of atomic nuclei. An specially designed electron beam energy detuning system for electron-ion recombination precision spectroscopy experiments has been installed at the heavy ion storage ring CSRe in Lanzhou, where the electron-ion collision energy under the center-of-mass system can be detuned to 1 keV, and an independently-developed plastic scintillator detector and multiwire proportional chamber detector have been installed downstream of the electron cooler of the CSRe for the detection of recombined ions. The multiwire proportional chamber detector has the ability to non-destructively monitor the profile of the ion beam in real-time while acquiring the recombined ion counts, providing guidance for optimization of the ion beam. On this basis, the first test experiment of dielectronic recombination of Kr25+ ions has been carried out at the CSRe, and the dielectronic recombination rate coefficients in the range of 0-70 eV at the frame of center-of-mass were measured. In order to fully understand the experimental results, we calculated the dielectronic recombination rate coefficients of the Kr25+ ion using the Flexible Atomic Code (FAC) and made a detailed comparison with the experiment, which is in good agreement, and only the resonance energies of the two resonance peaks at 1.695 eV and 2.573 eV are significantly different. In addition, the DR resonance energies and intensities were obtained by fitting the experimental results in the range 0-35 eV, and we found that the transition 3s→4l (∆n=1) contributes significantly to the experimental spectral lines. Furthermore, we compare the plasma rate coefficients derived from the DR rate coefficients with those derived from the AUTOSTRUCTURE and FAC theories, which differ by 20 percent in the temperature range less than 106 K. The experimental results show that the DR experimental platform of the CSRe has very good stability and reproducibility, and can provide support for the future DR experiments of highly charged ion, i.e. for testing strong-field quantum electrodynamics effect and measuring the properties of atomic nuclei.
  • [1]

    Gillaspy J D 2001 J. Phys. B:At. Mol. Opt. Phys. 34 R93

    [2]

    Kozlov M, Safronova M, López-Urrutia J C, Schmidt P 2018 Rev. Mod. Phys. 90 045005

    [3]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2001 Phys. Rev. Lett. 86 5027

    [4]

    Brandau C, Kozhuharov C, Müller A, Shi W, Schippers S, Bartsch T, Böhm S, Böhme C, Hoffknecht A, Knopp H, Grün N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stöhlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202

    [5]

    Schuch R, Lindroth E, Madzunkov S, Fogle M, Mohamed T, Indelicato P 2005 Phys. Rev. Lett. 95 183003

    [6]

    Brandau C, Kozhuharov C, Harman Z a, Müller A, Schippers S, Kozhedub Y S, Bernhardt D, Böhm S, Jacobi J, Schmidt E W, Mokler P H, Bosch F, Kluge H-J, Stöhlker T, Beckert K, Beller P, Nolden F, Steck M, Gumberidze A, Reuschl R, Spillmann U, Currell F, Tupitsyn I I, Shabaev V M, Jentschura U D, Keitel C H, Wolf A, Stachura Z 2008 Phys. Rev. Lett. 100 7 073201

    [7]

    Chuai X Y, Huang Z K, Wen W Q, Wang H B, Xu X, Wang S X, Li J G, Dou L J, Zhao D M, Zhu X L, Mao L J, Yin D Y, Yang J C, Yuan Y J, Ma X W 2018 Nucl. Phys. Rev.35 196 (in Chinese)[啜晓亚, 黄忠魁, 汶伟强, 汪寒冰, 许鑫, 汪书兴, 李冀光, 豆丽君, 赵冬梅, 朱小龙, 冒立军, 殷达钰, 杨建成, 原有进, 马新文 2018 原子核物理评论 35 196]

    [8]

    Kieslich S, Schippers S, Shi W, Müller A, Gwinner G, Schnell M, Wolf A, Lindroth E, Tokman M 2004 Phys. Rev. A 70 042714

    [9]

    Budker G, Kiselev A, Konkov N, Naumov A, Niffontov V, Ostreiko G, Petrov V, Yudin L, Yasnov G 1965 V International Conference on High Energy Accelerators ProceedingsFrascati, September 9-16, 1965 p455

    [10]

    Poth H 1990 Phys. Rep. 196 135

    [11]

    Mitchell J, Ng C, Forand J, Levac D, Mitchell R, Sen A, Miko D, McGowan J W 1983 Phys. Rev. Lett. 50 335

    [12]

    Dittner P, Datz S, Miller P, Moak C, Stelson P H, Bottcher C, Dress W, Alton G, Nešković N, Fou C 1983 Phys. Rev. Lett. 51 31

    [13]

    Müller A 2008 Advances In Atomic, Molecular, and Optical Physics (Academic Press) pp293-417

    [14]

    Schippers S 2015 Nucl. Instrum. Methods Phys. Res. B 350 61

    [15]

    Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235 2

    [16]

    Khan N, Huang Z-K, Wen W-Q, Mahmood S, Dou L-J, Wang S-X, Xu X, Wang H-B, Chen C-Y, Chuai X-Y, Zhu X-L, Zhao D-M, Mao L-J, Li J, Yin D-Y, Yang J-C, Yuan Y-J, Zhu L-F, Ma X-W 2018 Chinese Phys. C 42 064001

    [17]

    Wang S X, Xu X, Huang Z K, Wen W Q, Wang H B, Khan N, Preval S P, Badnell N R, Schippers S, Mahmood S, Dou L J, Chuai X Y, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Tang M T, Yin D Y, Yang J C, Ma X, Zhu L F 2018 Astrophys. J.862 134

    [18]

    Wang S-X, Huang Z-K, Wen W-Q, Chen C-Y, Schippers S, Xu X, Sardar S, Khan N, Wang H-B, Dou L-J, Mahmood S, Zhao D-M, Zhu X-L, Mao L-J, Ma X-M, Li J, Tang M-T, Mao R-S, Yin D-Y, Yuan Y-J, Yang J-C, Shi Y-L, Dong C-Z, Ma X-W, Zhu L-F 2019 Astron. Astrophys. 627 171

    [19]

    Huang Z K, Wang S X, Wen W Q, Xu X, Wang H B, Li S, Dou L J, Khan N, Mahmood S, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yang J C, Yin D Y, Yuan Y J, Chen C Y, Zhu L F, Ma X 2020 X-Ray Spectrom.49 155

    [20]

    Wen W Q, Huang Z K, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S, Badnell N R, Ma W L, Chen D Y, Liu X, Zhao D M, Mao L J, Li J, Ma X M, Tang M T, Yin D Y, Yang W Q, Yuan Y J, Yang J C, Zhu L F, Ma X 2020 Astrophys. J 905 36

    [21]

    Khan N, Huang Z-K, Wen W-Q, Wang S-X, Chen C-Y, Zhang C-Y, Wang H-B, Liu X, Ma W-L, Chen D-Y, Yao K, Zhao D-M, Mao L-J, Ma X-M, Li J, Tang M-T, Yin D-Y, Yuan Y-J, Yang J-C, Zhu L-F, Ma X-W 2022 J. Phys. B:At. Mol. Opt. Phys. 55 035001

    [22]

    Huang Z K, Wen W Q, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S P, Badnell N R, Ma W L, Liu X, Chen D Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yang W Q, Yang J C, Yuan Y J, Zhu L F, Ma X 2020 Phys. Rev. A 102 062823

    [23]

    Shevelko V P, Stöhlker T, Tawara H, Tolstikhina I Y, Weber G 2010 Nucl. Instrum. Methods Phys. Res. B 268 2611

    [24]

    Yan K, Zhou Y, Ma X, Tang M, Gao D, Zhao H, Huang Z, Wen W, Mao L 2023 Nucl. Instrum. Methods Phys. Res. A 1046 167699

    [25]

    Skorobogatov D, Bryzgunov M, Kondaurov M, Putmakov A, Reva V, Repkov V 2019 Proceedings of the 12th Workshop on Beam Cooling and Related TopicsNovosibirsk, Russia,September 24-27 ,2019 p86-88

    [26]

    Menz E B, Hahn C, Pfäfflein P, Weber G, Stöhlker T 2020 J. Phys.:Conf. Ser. 1412 232006

    [27]

    Westman S, Kerek A, Klamra W, Norlin L-O, Novak D 2002 Nucl. Instrum. Methods Phys. Res. A 481 655

    [28]

    Miersch G, Habs D, Kenntner J, Schwalm D, Wolf A 1996 Nucl. Instrum. Methods Phys. Res. A 369 277

    [29]

    Klepper O, Kozhuharov C 2003 Nucl. Instrum. Methods Phys. Res. B 204 553

    [30]

    Ye Y L, Di Z Y, Li Z H, Wang Q J, Zheng T, Chen T, Jiang D X, Ge Y C, Pang D Y, Li X Q 2003 Nucl. Instrum. Methods Phys. Res. A 515 718

    [31]

    Kilgus G, Habs D, Schwalm D, Wolf A, Badnell N R, Muller A 1992 Phys. Rev. A 46 5730

    [32]

    Schippers S, Bartsch T, Brandau C, Müller A, Gwinner G, Wissler G, Beutelspacher M, Grieser M, Wolf A, Phaneuf R A 2000 Phys. Rev. A 62 022708

    [33]

    Danared H 1995 Phys. Scr. 1995 121

    [34]

    Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235

    [35]

    Badnell N R 2011 Comput. Phys. Commun. 182 1528

    [36]

    Badnell N 2006 Astrophys. J 651 L73

    [37]

    Gu M F 2008 Can. J..Phys. 86 675

    [38]

    Gu M F 2003 Astrophys. J 590 1131

    [39]

    Schippers S, Müller A, Gwinner G, Linkemann J, Saghiri A, Wolf A 2001 Astrophys. J 555 1027

    [40]

    Schippers S, Schnell M, Brandau C, Kieslich S, Müller A, Wolf A 2004 Astron. Astrophys. 421 1185

  • [1] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, doi: 10.7498/aps.73.20231919
    [2] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, doi: 10.7498/aps.71.20210871
    [3] 温志文, 祁辉荣, 张余炼, 王海云, 刘凌, 王艳凤, 张建, 李玉红, 孙志嘉. 用于中国散裂中子源多功能反射谱仪的高气压多丝正比室探测器的研制. 物理学报, doi: 10.7498/aps.67.20172618
    [4] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, doi: 10.7498/aps.66.245201
    [5] 温志文, 祁辉荣, 王艳凤, 孙志嘉, 张余炼, 王海云, 张建, 欧阳群, 陈元柏, 李玉红. 二维多丝室探测器读出方法的优化. 物理学报, doi: 10.7498/aps.66.072901
    [6] 符彦飙, 王旭东, 苏茂根, 董晨钟. Au34+离子双电子复合过程的理论研究. 物理学报, doi: 10.7498/aps.65.033401
    [7] 温志文, 祁辉荣, 代洪亮, 张余炼, 魏堃, 张建, 欧阳群, 邵剑雄. 一维丝室气体探测器衍射像差的修正方法研究. 物理学报, doi: 10.7498/aps.64.082901
    [8] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究. 物理学报, doi: 10.7498/aps.62.122901
    [9] 杨建会, 范强, 张建平. 类氖等电子系列离子基态的双电子复合速率系数研究. 物理学报, doi: 10.7498/aps.61.193101
    [10] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, doi: 10.7498/aps.59.7815
    [11] 师应龙, 董晨钟, 张登红, 符彦飙. 高离化态Hg和U离子的双电子复合过程的理论研究. 物理学报, doi: 10.7498/aps.57.88
    [12] 张登红, 董晨钟, 颉录有, 丁晓斌, 符彦飙. 类氦离子的KLL双电子复合过程的相对论理论研究. 物理学报, doi: 10.7498/aps.55.112
    [13] 董晨钟, 符彦飙. 高离化态Cu18+离子的双电子复合及共振转移激发过程的理论研究. 物理学报, doi: 10.7498/aps.55.107
    [14] 易有根, 郑志坚, 颜君, 李萍, 方泉玉, 邱玉波. Au激光等离子体的双电子复合速率系数. 物理学报, doi: 10.7498/aps.51.2740
    [15] 盛勇, 蒋刚, 朱正和. 类氢类氦类锂镁离子双电子复合的旁观电子角动量研究. 物理学报, doi: 10.7498/aps.51.501
    [16] 焦荣珍, 程新路, 杨向东, 朱俊. 类镍Dy38+离子的双电子复合速率研究. 物理学报, doi: 10.7498/aps.51.1755
    [17] 杨震华, 武玉璞. 储存环光速调管自由电子激光的电子束能量调制. 物理学报, doi: 10.7498/aps.46.279
    [18] 陈式刚, 王文杰, 王光瑞. 储存环型自由电子激光器光场混沌的控制. 物理学报, doi: 10.7498/aps.44.862
    [19] 吴关洪, 王蕴玉, 唐孝威. 用Ge(Li)探测器测量正电子3γ湮没. 物理学报, doi: 10.7498/aps.32.417
    [20] 李家明. 双电子复合逆过程的多通道理论. 物理学报, doi: 10.7498/aps.32.84
计量
  • 文章访问数:  93
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-08

/

返回文章
返回