搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

W6+离子的电子碰撞电离研究

马莉莉 张世平 张芳军 李麦娟 蒋军 丁晓彬 颉录有 张登红 董晨钟

引用本文:
Citation:

W6+离子的电子碰撞电离研究

马莉莉, 张世平, 张芳军, 李麦娟, 蒋军, 丁晓彬, 颉录有, 张登红, 董晨钟

Theoretical investigation of electron-impact ionization of W6+ ion

Ma Li-Li, Zhang Shi-Ping, Zhang Fang-Jun, Li Mai-Juan, Jiang Jun, Ding Xiao-Bin, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong
PDF
导出引用
  • 本文采用细致能级扭曲波方法(level-to-level distorted-wave, LLDW)计算了W6+离子基态[K r]140d 52s 4 和亚稳态[K r]140d 52s 41f4、[Kr]4d105s24f135p65d1、[Kr]4d105s24f145p55f1和[Kr]4d105s24f135p65f1的电子碰撞单电离(EISI)截面.为了考虑亚稳态离子对电离的贡献,我们使用了三种模型来确定母离子束中处于长寿命能级的比值.与Pindzola等的理论结果和Stenke等实验结果进行比较,发现在考虑了亚稳态的贡献后我们的结果和Stenke等的实验结果吻合的很好.
    Due to its unique characteristics, metal tungsten has been selected as the wall material for the tokamak magnetic confinement fusion device. The wall material directly interacts with the plasma for a long time, causing tungsten atoms and ions to be sputtered and ionized into different charge states, which then enter the tokamak device as plasma impurities. To ensure stable plasma combustion conditions, highly complex modeling is currently being conducted to evaluate the behavior of tungsten impurities and their impact on the tokamak plasma. This requires various high-precision atomic data for tungsten atoms and different ionized states of tungsten ions. Electron collision ionization, as a fundamental atomic physical process, is widely encountered in laboratory and astrophysical plasma environments. The parameters such as electron collision ionization cross-sections and rate coefficients are crucial for plasma radiation transport simulations and state diagnostics.Electron-impact single-ionization (EISI) cross sections of the ground state and metastable state for W6+ ions have been calculated using the level-to-level distorted-wave (LLDW) method. The contribution of direct ionization (DI) and excited autoionization (EA) cross sections to the total EISI cross section has been primarily considered.Comparison of our calculated results with the experimental data from Stenke et al. reveals that the EISI cross section considering only the ground state is significantly smaller than the experimental findings. Therefore, it is imperative to take into account the contribution from the metastable state. To determine the fraction of ions in long-lived energy levels within the parent ion beam, three models have been employed.Our results, which include the contribution of metastable states, agree well with the experimental spectrum of Stenke et al. Comparing with the theoretical calculations of Pindzola et al. our calculaiton provides a more comprehensive understanding of the electron-impact single-ionization processes for W6+ ions. The comparison is illustrated in Figure.Fig. Comparison of our W6+ ions fitting EISI with experiment[24]. Red、green and blue solid line respresent the results of the model 1、model 2 and model 3, respectively. The black solid line is the EISI cross section of ground state 4f145p6.
  • [1]

    Demura A V, Kadomtsev M B, Lisitsa V S, Shurygin V A 2015High Energy Density Physics 15 49

    [2]

    Biedermann C, Radtke R, Seidel R, Pütterich T 2009Phys. Scr. T134 014026

    [3]

    Colgan J, Pindzola M S 2012Eur. Phys. J. D 66 284

    [4]

    Wirth B D, Nordlund K, Whyte D G, Xu D 2011MRS Bull. 36 216

    [5]

    Preval S P, Badnell N R, O’Mullane M G 2019J. Phys. B: At. Mol. Opt. Phys. 52 025201

    [6]

    Kramida A E, Reader J 2006Atomic Data and Nuclear Data Tables 92 457

    [7]

    Pütterich T, Neu R, Dux R, Whiteford A D, O’Mullane M G, Summers H P 2010Nucl. Fusion 50 025012

    [8]

    Müller A 2015Atoms 3 120

    [9]

    Pütterich T, Fable E, Dux R, O’Mullane M, Neu R, Siccinio M 2019Nucl. Fusion 59 056013

    [10]

    Montague R G, Harrison M F A 1984J. Phys. B: At. Mol. Phys. 17 2707

    [11]

    Rausch J, Becker A, Spruck K, Hellhund J, Borovik A, Huber K, Schippers S, Müller A 2011J. Phys. B: At. Mol. Opt. Phys. 44 165202

    [12]

    Borovik A, Ebinger B, Schury D, Schippers S, Müller A 2016Phys. Rev. A 93 012708

    [13]

    Schury D, Borovik A, Ebinger B, Jin F, Spruck K, Müller A, Schippers S 2020J. Phys. B: At. Mol. Opt. Phys. 53 015201

    [14]

    Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Volpel R, Salzborn E 1995J. Phys. B: At. Mol. Opt. Phys. 28 2711

    [15]

    Ballance C P, Loch S D, Pindzola M S, Griffin D C 2013J. Phys. B: At. Mol. Opt. Phys. 46 055202

    [16]

    Pindzola M S, Griffin D C 1997Phys. Rev. A 56 1654

    [17]

    Zhang D, Xie L, Jiang J, Wu Z, Dong C, Shi Y, Qu Y 2018Chinese Phys. B 27 053402

    [18]

    Jin F, Borovik A, Ebinger B, Schippers S 2020J. Phys. B: At. Mol. Opt. Phys. 53 075201

    [19]

    Jonauskas V, Kynienė A, Kučas S, Pakalka S, Masys Š, Prancikevičius A, Borovik A, Gharaibeh M F, Schippers S, Müller A 2019Phys. Rev. A 100 062701

    [20]

    Chen L, Li B, Chen X 2022Journal of Quantitative Spectroscopy and Radiative Transfer 285 108179

    [21]

    Bao R, Wei J, Chen L, Li B, Chen X 2023Chinese Phys. B 32 063401

    [22]

    Yan C L, Lu Q, Xie Y M, Li B L, Fu N, Zou Y, Chen C, Xiao J 2022Phys. Rev. A 105 032820

    [23]

    Gu M F 2008Can. J. Phys. 86 675

    [24]

    Stenke M, Aichele K, Hathiramani D, Hofmann G, Steidl M, Volpel R, Shevelko V P, Tawara H, Salzborn E 1995J. Phys. B: At. Mol. Opt. Phys. 28 4853

    [25]

    Jonauskas V, Kučas S, Karazija R 2009Lithuanian J. Phys. 49 415

    [26]

    Grant I P, McKenzie B J 1980J. Phys. B: At. Mol. Phys. 13 2671

    [27]

    Kramida A, Ralchenko Yu, Reader J and NIAT ASD Team (2021). NISI Atomic Spectra Database

    [28]

    Zhang S, Zhang F, Zhang D, Ding X, Jiang J, Xie L, Ma Y, Li M, Sikorski M, Dong C 2024Chinese Phys. B 33 033401

    [29]

    Jonauskas V, Kynienė A, Kučas S, Pakalka S, Masys Š, Prancikevičius A, Borovik A, Gharaibeh M F, Schippers S, Müller A 2019Phys. Rev. A 100 062701

    [30]

    Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Volpel R, Salzborn E 1995J. Phys. B: At. Mol. Opt. Phys. 28 2711

    [31]

    Dipti, Das T, Bartschat K, Bray I, Fursa D V, Zatsarinny O, Ballance C, Chung H K, Ralchenko Yu 2019Atomic Data and Nuclear Data Tables 127–128 1

  • [1] 周旭, 王川, 胡荣豪, 陶治豪, 邓小良, 梁亦寒, 李晓亚, 吕蒙, 祝文军. 中高Z元素原子、离子的电子碰撞电离与激发截面快速计算方法. 物理学报, doi: 10.7498/aps.73.20240213
    [2] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能. 物理学报, doi: 10.7498/aps.68.20190670
    [3] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究. 物理学报, doi: 10.7498/aps.65.068501
    [4] 谭文静, 安竹, 朱敬军, 赵建玲, 刘慢天. 10-25 keV电子致厚W,Au靶韧致辐射谱的测量. 物理学报, doi: 10.7498/aps.65.113401
    [5] 敬明, 邓卫, 王昊, 季彦婕. 基于跟车行为的双车道交通流元胞自动机模型. 物理学报, doi: 10.7498/aps.61.244502
    [6] 郑亮, 马寿峰, 贾宁. 基于驾驶员行为的元胞自动机模型研究. 物理学报, doi: 10.7498/aps.59.4490
    [7] 杨宁选, 蒋 军, 颉录有, 董晨钟. Breit相互作用对类氦离子亚稳态1s2s 3S1电子碰撞激发截面的影响. 物理学报, doi: 10.7498/aps.57.2888
    [8] 陈时东, 朱留华, 孔令江, 刘慕仁. 优先随机慢化及预测间距对交通流的影响. 物理学报, doi: 10.7498/aps.56.2517
    [9] 乔秀梅, 张国平, 张覃鑫. 模拟卢瑟福实验室的实验以检验理论模拟. 物理学报, doi: 10.7498/aps.55.1181
    [10] 王光军, 王 芳, 沈保根. LaFe11.4Al1.6中铁磁相与反铁磁相的双相共存. 物理学报, doi: 10.7498/aps.54.1410
    [11] 邝 华, 孔令江, 刘慕仁. 考虑延迟概率因素对混合车辆敏感驾驶交通流模型的研究. 物理学报, doi: 10.7498/aps.53.4138
    [12] 金 毅, 潘佰良, 陈 钢, 陈 坤, 姚志欣. 铜蒸气激光脉冲终止机理的数值研究. 物理学报, doi: 10.7498/aps.53.1799
    [13] 雷 丽, 薛 郁, 戴世强. 交通流的一维元胞自动机敏感驾驶模型. 物理学报, doi: 10.7498/aps.52.2121
    [14] 齐静波, 陈重阳, 王炎森. 类钠离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.50.1475
    [15] 滕华国, 徐至展, 胡畏, 王炎森, 方渡飞. 类钠铜离子的激发自电离. 物理学报, doi: 10.7498/aps.45.1788
    [16] 方泉玉, 蔡蔚, 沈智军, 李萍, 邹宇, 徐元光, 陈国新. 电子与高荷电离子碰撞激发的扭曲波截面. 物理学报, doi: 10.7498/aps.44.383
    [17] 方渡飞, 王炎森, 胡畏, 高海滨, 陆福全. 类硼离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.42.40
    [18] 胡畏, 方渡飞, 王炎森, 陆福全, 汤家镛, 杨福家. 包含激发-自电离的类锂离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.42.1416
    [19] 方渡飞, 王炎森, 胡畏. 类氦离子的电子碰撞电离微分截面. 物理学报, doi: 10.7498/aps.41.744
    [20] 沈俊锋, 徐云飞, 吴璧如, 郑幼凤, 陆杰, 王云仙. Yb的激光三步激发自电离谱. 物理学报, doi: 10.7498/aps.41.732
计量
  • 文章访问数:  111
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-09

/

返回文章
返回