搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿秒脉冲串产生和相位信息重构的对比研究

朱孝先 高亦谈 王羡之 王一鸣 王佶 王兆华 赵昆 魏志义

引用本文:
Citation:

阿秒脉冲串产生和相位信息重构的对比研究

朱孝先, 高亦谈, 王羡之, 王一鸣, 王佶, 王兆华, 赵昆, 魏志义

Research of attosecond pulse train generation and phase information reconstruction

Zhu Xiao-Xian, Gao Yi-Tan, Wang Xian-Zhi, Wang Yi-Ming, Wang Ji, Wang Zhao-Hua, Zhao Kun
PDF
导出引用
  • 阿秒脉冲为研究原子、分子和电子的超快动力学变化提供了前所未有的测量精度。目前最成熟的方法是使用飞秒激光与气体相互作用产生阿秒脉冲串和孤立阿秒脉冲。阿秒脉冲的时域信息以及电子的动力学信息可以通过阿秒条纹相机或基于双光子跃迁干涉的重构阿秒拍频(RABBITT)方法从能谱图中提取。本文研究了阿秒脉冲串的产生、测量和表征,通过自主设计建造的钛宝石放大器和阿秒束线进行实验获得光电子能谱图,并采用不同方法重构阿秒脉冲串的相位信息。这对于深入理解电子动力学并进行相关测量具有重要意义
    Attosecond pulses provide higher measurement precision for analyzing ultrafast dynamics in atoms, molecules, and electrons, laying the foundation for studying electronic motion in atomic and molecular systems. The most important method currently is to generate attosecond pulse trains and isolated attosecond pulses through the interaction of femtosecond lasers with gases. The temporal information of attosecond pulses and the dynamic information of electrons can be extracted from spectrograms using attosecond streak camera or the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions (RABBITT) method based on two-photon transition interference. Although phase differences of different high-order harmonics can be directly extracted from the oscillation frequency of sidebands, the iterative algorithm of attosecond streak camera can provide complete phase information of attosecond pulse trains to better support the study of electron dynamics in atoms. Research Purpose: The research presented in this article is dedicated to the investigation of attosecond pulse train (APT) generation, measurement, and characterization, which are essential for probing ultrafast dynamics in atomic, molecular, and electronic systems. The primary focus is on the generation of APTs through interactions between femtosecond lasers and gases, as well as the extraction of temporal and dynamic information from these pulses using advanced spectroscopic techniques such as the RABITT method. Methods: The experimental approach involved the use of a homebuilt femtosecond titanium sapphire regenerative amplifier to produce high-order harmonics, leading to the generation of APTs. The setup included the homebuilt titanium sapphire chirped pulse amplifier and a collinear attosecond pulse generation and measurement beamline, which were used to conduct RABITT experiments. The process entailed the interaction of femtosecond lasers with gas targets to generate high-energy photons in the extreme ultraviolet and soft X-ray spectral ranges. By optimizing the phase-matching conditions within the gas target, strong high-order harmonic signals were observed on an XUV spectrometer. The temporal information of the attosecond pulses was indirectly measured through the photoelectron spectrum produced by the interaction of attosecond pulses with femtosecond lasers. The research also employed the FROG-CRAB algorithm and the ePIE (Extended Phase Retrieval and Iterative Engine) algorithm for the temporal reconstruction of APTs and attempted to use a genetic algorithm to extract phase information. Results: The study yielded three sets of RABITT spectrograms, which were analyzed using the RABITT sideband phase method to directly reconstruct APTs. Fourier transform analysis was applied to extract phase differences between sidebands, offering insights into the phase differences between corresponding high-order harmonics. This method, however, provided an estimation of the phase at the center of each harmonic order, which does not fully represent the actual pulse shape. The FROG-CRAB and ePIE algorithms successfully reconstructed the attosecond pulse trains from the RABITT spectrograms, revealing similar temporal pulse train morphologies. In contrast, the genetic algorithm, despite its potential for high constraint optimization, did not yield satisfactory results, possibly due to the sensitivity of the algorithm to discrepancies between theoretical simulations and experimental data. Conclusion: The research concludes that achieving ideal inversion results for APTs necessitates small time delay steps and a wide scanning range during the experimental data collection process to ensure a rich dataset for inversion. The FROG-CRAB and ePIE algorithms demonstrated effective performance in reconstructing APTs, with ePIE showing higher computational efficiency. The genetic algorithm, while offering a high degree of constraint, faced challenges and requires further refinement. The study underscores the importance of the signal-to-noise ratio in experimental data for the accuracy of inversion results. This work provides significant guidance for future measurements of electron dynamics and the interpretation of their evolution patterns, contributing valuable experimental methodologies and data analysis techniques to the field of attosecond science.
  • [1]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401

    [2]

    Zholents A, Zolotorev M 2008 New J. Phys. 10 025005

    [3]

    Nees J, Naumova N, Power E, Yanovsky V, Sokolov I, Maksimchuk A, Bahk S-W, Chvykov V, Kalintchenko G, Hou B 2005 J. Mod. Opt. 52 305

    [4]

    Kaplan A 1994 Phys. Rev. Lett. 73 1243

    [5]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I, Boyer K, Rhodes C K 1987 JOSA B 4 595

    [6]

    Ferray M, L'Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31

    [7]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 178

    [8]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [9]

    Antoine P, L'huillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234

    [10]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R 2006 Science 314 443

    [11]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [12]

    Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F, Corkum P B 2002 Phys. Rev. Lett. 88 173903

    [13]

    Muller H G 2002 Appl. Phys. B 74 s17

    [14]

    Paul P-M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689

    [15]

    Mairesse Y, Quéré F 2005 Physical Review A 71 011401

    [16]

    Gagnon J, Goulielmakis E, Yakovlev V S 2008 Appl. Phys. B 92 25

    [17]

    Chini M, Gilbertson S, Khan S D, Chang Z 2010 Opt. Express 18 13006

    [18]

    Zhao X, Wei H, Wu Y, Lin C D 2017 Physical Review A 95 043407

    [19]

    Keathley P D, Bhardwaj S, Moses J, Laurent G, Kaertner F X 2016 New J. Phys. 18 073009

    [20]

    Månsson E P, Guénot D, Arnold C L, Kroon D, Kasper S, Dahlström J M, Lindroth E, Kheifets A S, L’huillier A, Sorensen S L 2014 Nat. Phys. 10 207

    [21]

    Jordan I, Huppert M, Pabst S, Kheifets A S, Baykusheva D, Wörner H J 2017 Physical Review A 95 013404

    [22]

    Kotur M, Guenot D, Jiménez-Galán Á, Kroon D, Larsen E W, Louisy M, Bengtsson S, Miranda M, Mauritsson J, Arnold C 2016 Nat. Commun. 7 10566

    [23]

    Haessler S, Fabre B, Higuet J, Caillat J, Ruchon T, Breger P, Carré B, Constant E, Maquet A, Mével E 2009 Physical Review A 80 011404

    [24]

    Klünder K, Dahlström J, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011 Phys. Rev. Lett. 106 143002

    [25]

    Zhan M, Ye P, Teng H, He X, Zhang W, Zhong S, Wang L, Yun C, Wei Z 2013 Chin. Phys. Lett. 30 093201

    [26]

    Jiang Y, Liang Y, Gao Y, Zhao K, Xu S, Wang J, He X, Teng H, Zhu J, Chen Y 2020 Chin. Phys. B 29 013206

    [27]

    Zhong S, Teng H, Zhu X, Gao Y, Wang K, Wang X, Wang Y, Yu S, Zhao K, Wei Z 2023 Chinese Optics Letters 21 113201

    [28]

    Lucchini M, Brügmann M, Ludwig A, Gallmann L, Keller U, Feurer T 2015 Opt. Express 23 29502

    [29]

    Kheifets A S, Bray A W J P R A 2021 103 L011101

    [30]

    Cattaneo L, Vos J, Lucchini M, Gallmann L, Cirelli C, Keller U J O e 2016 24 29060

  • [1] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, doi: 10.7498/aps.72.20222436
    [2] 阿秒物理专题编者按. 物理学报, doi: 10.7498/aps.71.230101
    [3] 陈高. 利用三色组合脉冲激光获得孤立阿秒脉冲发射. 物理学报, doi: 10.7498/aps.71.20211502
    [4] 宋浩, 吕孝源, 朱若碧, 陈高. 利用脉宽10 fs偏振控制脉冲获得孤立阿秒脉冲. 物理学报, doi: 10.7498/aps.68.20190392
    [5] 黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义. 基于瞬态光栅频率分辨光学开关装置的阿秒延时相位控制. 物理学报, doi: 10.7498/aps.67.20181570
    [6] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, doi: 10.7498/aps.63.244202
    [7] 刘胜男, 陈高, 孟健. 60 fs长脉宽双色场作用下孤立阿秒脉冲的产生. 物理学报, doi: 10.7498/aps.61.143201
    [8] 夏昌龙, 刘学深. 任意夹角的双色偏振激光作用下孤立阿秒脉冲的产生. 物理学报, doi: 10.7498/aps.61.043303
    [9] 孟健, 陈高, 刘胜男. 多周期双色场方案下附加脉冲频率对阿秒脉冲产生的影响. 物理学报, doi: 10.7498/aps.61.203202
    [10] 陆莹瑛, 曾志男, 郑颖辉, 邹璞, 刘灿东, 龚成, 李儒新, 徐至展. 双色光场驱动产生单个阿秒脉冲过程中的宏观效应. 物理学报, doi: 10.7498/aps.60.103202
    [11] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲. 物理学报, doi: 10.7498/aps.60.033202
    [12] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, doi: 10.7498/aps.58.1579
    [13] 洪伟毅, 杨振宇, 兰鹏飞, 陆培祥. 利用低频场控制轨道直接产生低于50阿秒的单个脉冲. 物理学报, doi: 10.7498/aps.57.5853
    [14] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生. 物理学报, doi: 10.7498/aps.57.7848
    [15] 雷 亮, 文锦辉, 焦中兴, 赖天树, 林位株. 飞秒脉冲振幅和相位的无干涉条纹重构法测量. 物理学报, doi: 10.7498/aps.57.307
    [16] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, doi: 10.7498/aps.56.1608
    [17] 曹 伟, 兰鹏飞, 陆培祥. 紧聚焦激光束作用于电子实现单个阿秒脉冲输出. 物理学报, doi: 10.7498/aps.55.2115
    [18] 郑 君, 盛政明, 张 杰. 高能电子与超强激光束作用产生的阿秒脉冲列. 物理学报, doi: 10.7498/aps.54.2638
    [19] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, doi: 10.7498/aps.54.2653
    [20] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, doi: 10.7498/aps.53.2316
计量
  • 文章访问数:  174
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-29

/

返回文章
返回