搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿秒脉冲串产生和相位信息重构的对比研究

朱孝先 高亦谈 王羡之 王一鸣 王佶 王兆华 赵昆 魏志义

引用本文:
Citation:

阿秒脉冲串产生和相位信息重构的对比研究

朱孝先, 高亦谈, 王羡之, 王一鸣, 王佶, 王兆华, 赵昆, 魏志义

Comparative study on generation of attosecond pulse train and phase information reconstruction

Zhu Xiao-Xian, Gao Yi-Tan, Wang Xian-Zhi, Wang Yi-Ming, Wang Ji, Wang Zhao-Hua, Zhao Kun, Wei Zhi-Yi
PDF
HTML
导出引用
  • 阿秒脉冲为研究原子、分子和电子的超快动力学提供了前所未有的测量精度. 目前最成熟的方法是使用飞秒激光与气体相互作用产生阿秒脉冲串和孤立阿秒脉冲. 阿秒脉冲的时域信息以及电子的动力学信息可以通过阿秒条纹相机或基于双光子跃迁干涉的重构阿秒拍频(RABBITT)方法从能谱图中提取. 本文研究了阿秒脉冲串的产生、测量和表征, 通过自主设计建造的钛宝石放大器和阿秒束线进行实验获得光电子能谱图, 并采用不同方法重构阿秒脉冲串的相位信息. 这对于深入理解电子动力学并进行相关测量具有重要意义.
    Attosecond pulses provide higher measurement precision for analyzing ultrafast dynamics in atoms, molecules, and electrons, laying the foundation for studying electronic motion in atomic and molecular systems. The most important method currently is to generate attosecond pulse trains and isolated attosecond pulses through the interaction of femtosecond lasers with gases. The temporal information of attosecond pulses and the dynamic information of electrons can be extracted from spectrograms by using attosecond streak camera or the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) method based on two-photon transition interference. Although the differences in phase among different high-order harmonics can be directly extracted from the oscillation frequencies of sidebands, the iterative algorithm of attosecond streak camera can provide complete phase information of attosecond pulse trains to better support the study of electron dynamics in atoms. Research purpose  This work is dedicated to the investigation of the generation, measurement, and characterization of attosecond pulse train (APT), which are essential for probing ultrafast dynamics in atomic, molecular, and electronic systems. The focus is on the generation of APTs through interactions between femtosecond lasers and gases, as well as the extraction of temporal and dynamic information from these pulses by using advanced spectroscopic techniques such as the RABITT method. Methods  The experimental approach involves the use of a homebuilt femtosecond titanium sapphire regenerative amplifier to produce high-order harmonics, leading to the generation of APTs. The setup includes the homebuilt titanium sapphire chirped pulse amplifier and a collinear attosecond pulse generation and measurement beamline, which are used to conduct RABITT experiments. The process requires the interaction of femtosecond lasers with gas targets to generate high-energy photons in the extreme ultraviolet and soft X-ray spectral ranges. By optimizing the phase-matching conditions within the gas target, strong high-order harmonic signals are observed on an XUV spectrometer. The temporal information of the attosecond pulses is indirectly measured through the photoelectron spectrum produced by the interaction of attosecond pulses with femtosecond lasers. The research also employs the FROG-CRAB algorithm and the extended phase retrieval and iterative engine (ePIE) algorithm for temporally reconstructing APTs and attempts to use a genetic algorithm to extract phase information. Results  The study yields three sets of RABITT spectrograms, which are analyzed by using the RABITT sideband phase method to directly reconstruct APTs. Fourier transform analysis is used to extract phase differences between sidebands, offering insights into the phase differences between corresponding high-order harmonics. This method, however, provides an estimation of the phase in the center of each harmonic order, which does not fully represent the actual pulse shape. The FROG-CRAB algorithm and ePIE algorithm successfully reconstructs the attosecond pulse trains from the RABITT spectrograms, revealing similar temporal pulse train morphologies. In contrast, the genetic algorithm, despite its potential for high constraint optimization, does not yield satisfactory results, possibly due to the sensitivity of the algorithm to discrepancies between theoretical simulations and experimental data. Conclusions  The research concludes that achieving ideal inversion results for APTs necessitates small time delay steps and a wide scanning range in the experimental data collection process to ensure a rich dataset for inversion. The FROG-CRAB algorithm and ePIE algorithm demonstrate their effective performance in reconstructing APTs, with ePIE showing higher computational efficiency. The genetic algorithm, while offering a high degree of constraint, faces challenges and requires to be further refined. The study underscores the importance of the signal-to-noise ratio in experimental data for the accuracy of inversion results. This work provides significant guidance for future measuring electron dynamics and explaining their evolution patterns, contributing valuable experimental methods and data analysis techniques to the field of attosecond science.
      通信作者: 赵昆, zhaokun@iphy.ac.cn ; 魏志义, zywei@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 92150103, 61690221)、中国科学院稳定支持基础研究领域青年团队计划(批准号: YSBR-059)和国家重点研发计划(批准号: 2017YFB0405202)资助的课题.
      Corresponding author: Zhao Kun, zhaokun@iphy.ac.cn ; Wei Zhi-Yi, zywei@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92150103, 61690221), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-059), and the National Key Research and Development Program of China (Grant No. 2017YFB0405202).
    [1]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401Google Scholar

    [2]

    Zholents A, Zolotorev M 2008 New J. Phys. 10 025005Google Scholar

    [3]

    Nees J, Naumova N, Power E, Yanovsky V, Sokolov I, Maksimchuk A, Bahk S W, Chvykov V, Kalintchenko G, Hou B 2005 J. Mod. Opt. 52 305Google Scholar

    [4]

    Kaplan A 1994 Phys. Rev. Lett. 73 1243Google Scholar

    [5]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I, Boyer K, Rhodes C K 1987 JOSA B 4 595Google Scholar

    [6]

    Ferray M, L'Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31Google Scholar

    [7]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 178Google Scholar

    [8]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [9]

    Antoine P, L'huillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234Google Scholar

    [10]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R 2006 Science 314 443Google Scholar

    [11]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [12]

    Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F, Corkum P B 2002 Phys. Rev. Lett. 88 173903Google Scholar

    [13]

    Muller H G 2002 Appl. Phys. B 74 s17Google Scholar

    [14]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [15]

    Mairesse Y, Quéré F 2005 Phys. Rev. A 71 011401Google Scholar

    [16]

    Gagnon J, Goulielmakis E, Yakovlev V S 2008 Appl. Phys. B 92 25Google Scholar

    [17]

    Chini M, Gilbertson S, Khan S D, Chang Z 2010 Opt. Express 18 13006Google Scholar

    [18]

    Zhao X, Wei H, Wu Y, Lin C D 2017 Phys. Rev. A 95 043407Google Scholar

    [19]

    Keathley P D, Bhardwaj S, Moses J, Laurent G, Kaertner F X 2016 New J. Phys. 18 073009Google Scholar

    [20]

    Månsson E P, Guénot D, Arnold C L, Kroon D, Kasper S, Dahlström J M, Lindroth E, Kheifets A S, L’huillier A, Sorensen S L 2014 Nat. Phys. 10 207Google Scholar

    [21]

    Jordan I, Huppert M, Pabst S, Kheifets A S, Baykusheva D, Wörner H J 2017 Phys. Rev. A 95 013404Google Scholar

    [22]

    Kotur M, Guenot D, Jiménez-Galán Á, Kroon D, Larsen E W, Louisy M, Bengtsson S, Miranda M, Mauritsson J, Arnold C 2016 Nat. Commun. 7 10566Google Scholar

    [23]

    Haessler S, Fabre B, Higuet J, Caillat J, Ruchon T, Breger P, Carré B, Constant E, Maquet A, Mével E 2009 Phys. Rev. A 80 011404Google Scholar

    [24]

    Klünder K, Dahlström J, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011 Phys. Rev. Lett. 106 143002Google Scholar

    [25]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201Google Scholar

    [26]

    Jiang Y J, Liang Y Y, Gao Y T, Zhao K, Xu S Y, Wang J, He X K, Teng H, Zhu J F, Chen Y L, Wei Z Y 2020 Chin. Phys. B 29 013206Google Scholar

    [27]

    Zhong S Y, Teng H, Zhu X X, Gao Y T, Wang K J, Wang X Z, Wang Y M, Yu S, Zhao K, Wei Z Y 2023 Chin. Opt. Lett. 21 113201Google Scholar

    [28]

    Lucchini M, Brügmann M, Ludwig A, Gallmann L, Keller U, Feurer T 2015 Opt. Express 23 29502Google Scholar

    [29]

    Kheifets A S, Bray A W 2021 Phys. Rev. A 103 L011101Google Scholar

    [30]

    Cattaneo L, Vos J, Lucchini M, Gallmann L, Cirelli C, Keller U 2016 Opt. Express 24 29060Google Scholar

  • 图 1  Wizzler测量再生放大器输出光谱(a)及脉宽图(b)

    Fig. 1.  Spectrum (a) and pulse width (b) of the regenerative amplifier output measured by Wizzler.

    图 2  阿秒脉冲串产生测量实验装置图

    Fig. 2.  Diagram of the experimental setup for attosecond pulse train generation measurement.

    图 3  实验测到的3组RABBITT数据(a1), (b1), (c1)以及使用边带相位方法重建的阿秒脉冲串(a2), (b2), (c2), 图中标注了脉宽

    Fig. 3.  Experimental data of three sets of RABBITT (a1), (b1), (c1) and the reconstructed attosecond pulse train using the sideband phase method (a2), (b2), (c2), with the pulse width labeled.

    图 4  FROG-CRAB反演理论模拟的RABBITT能谱图重建阿秒脉冲串结果 (a)模拟的能谱图; (b), (c)中蓝线表示理论产生的阿秒脉冲串和相位, (b)中红线表示FROG-CRAB通过反演重建的阿秒脉冲串, (c)中绿线代表FROG-CRAB在RABBITT能谱图中提取到的相位

    Fig. 4.  Reconstruction results of RABBITT spectrogram using FROG-CRAB. The simulated spectrogram is displayed in panel (a). The blue lines in panel (b) and (c) represent the theoretically generated attosecond pulse train and phase, respectively. The red line in panel (b) indicates the attosecond pulse train reconstructed by FROG-CRAB, and the green line in panel (c) represents the phase extracted by FROG-CRAB from the RABBITT spectrogram.

    图 5  FROG-CRAB反演实验RABBITT能谱图重建阿秒脉冲串结果 (a1), (b1), (c1)实验测到的3组RABBIT能谱图; (a2), (b2), (c2)根据反演脉冲重建的能谱图; (a3), (b3), (c3)反演得到的时域阿秒脉冲串和相位

    Fig. 5.  Results of reconstructing attosecond pulse trains using FROG-CRAB from RABBITT spectrogram: (a1), (b1), (c1) Three sets of RABBITT spectrograms measured in the experiment; (a2), (b2), (c2) the reconstructed spectrograms based on the inverted pulses; (a3), (b3), (c3) the time-domain attosecond pulse trains and phases obtained from the inversion.

    图 6  ePIE反演理论模拟的RABBITT能谱图重建阿秒脉冲串结果 (a)模拟的能谱图; (b), (c)蓝线表示理论产生的阿秒脉冲串和相位, (b)中红线表示ePIE通过反演重建的阿秒脉冲串, (c)中绿线代表ePIE在RABBITT能谱图中提取到的相位

    Fig. 6.  Reconstruction results of RABBITT spectrogram using ePIE. The simulated spectrogram is displayed in panel (a). (b), (c) The blue lines represent the theoretically generated attosecond pulse train and phase, respectively. The red line in panel (b) indicates the attosecond pulse train reconstructed by ePIE, and the green line in panel (c) represents the phase extracted by ePIE from the RABBITT spectrogram.

    图 7  ePIE反演实验RABBITT能谱图重建阿秒脉冲串结果 (a1), (b1), (c1)实验测到的3组RABBIT能谱图; (a2), (b2), (c2)根据反演脉冲重建的能谱图; (a3), (b3), (c3)反演得到的时域阿秒脉冲串和相位

    Fig. 7.  Results of reconstructing attosecond pulse trains using ePIE from RABBITT spectrogram: (a1), (b1), (c1) Three sets of RABBITT spectrograms measured in the experiment; (a2), (b2), (c2) the reconstructed spectrograms based on the inverted pulses; (a3), (b3), (c3) the time-domain attosecond pulse trains and phases obtained from the inversion.

    图 8  遗传算法反演第3组实验RABBITT能谱图重建阿秒脉冲串结果 (a)第3组实验的能谱图; (b)遗传算法反演的能谱图; (c)遗传算法反演的时域脉冲串; (d)遗传算法在RABBITT能谱图中提取到的相位

    Fig. 8.  Results of reconstructing the attosecond pulse train of the third experimental RABBITT spectrogram using genetic algorithm: (a) The spectrogram of the third experimental RABBITT spectrogram; (b) the spectrogram inverted by the genetic algorithm; (c) the time-domain pulse train inverted by the genetic algorithm; (d) the phase extracted by the genetic algorithm from the RABBITT spectrogram.

  • [1]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401Google Scholar

    [2]

    Zholents A, Zolotorev M 2008 New J. Phys. 10 025005Google Scholar

    [3]

    Nees J, Naumova N, Power E, Yanovsky V, Sokolov I, Maksimchuk A, Bahk S W, Chvykov V, Kalintchenko G, Hou B 2005 J. Mod. Opt. 52 305Google Scholar

    [4]

    Kaplan A 1994 Phys. Rev. Lett. 73 1243Google Scholar

    [5]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I, Boyer K, Rhodes C K 1987 JOSA B 4 595Google Scholar

    [6]

    Ferray M, L'Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31Google Scholar

    [7]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 178Google Scholar

    [8]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [9]

    Antoine P, L'huillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234Google Scholar

    [10]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R 2006 Science 314 443Google Scholar

    [11]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [12]

    Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F, Corkum P B 2002 Phys. Rev. Lett. 88 173903Google Scholar

    [13]

    Muller H G 2002 Appl. Phys. B 74 s17Google Scholar

    [14]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [15]

    Mairesse Y, Quéré F 2005 Phys. Rev. A 71 011401Google Scholar

    [16]

    Gagnon J, Goulielmakis E, Yakovlev V S 2008 Appl. Phys. B 92 25Google Scholar

    [17]

    Chini M, Gilbertson S, Khan S D, Chang Z 2010 Opt. Express 18 13006Google Scholar

    [18]

    Zhao X, Wei H, Wu Y, Lin C D 2017 Phys. Rev. A 95 043407Google Scholar

    [19]

    Keathley P D, Bhardwaj S, Moses J, Laurent G, Kaertner F X 2016 New J. Phys. 18 073009Google Scholar

    [20]

    Månsson E P, Guénot D, Arnold C L, Kroon D, Kasper S, Dahlström J M, Lindroth E, Kheifets A S, L’huillier A, Sorensen S L 2014 Nat. Phys. 10 207Google Scholar

    [21]

    Jordan I, Huppert M, Pabst S, Kheifets A S, Baykusheva D, Wörner H J 2017 Phys. Rev. A 95 013404Google Scholar

    [22]

    Kotur M, Guenot D, Jiménez-Galán Á, Kroon D, Larsen E W, Louisy M, Bengtsson S, Miranda M, Mauritsson J, Arnold C 2016 Nat. Commun. 7 10566Google Scholar

    [23]

    Haessler S, Fabre B, Higuet J, Caillat J, Ruchon T, Breger P, Carré B, Constant E, Maquet A, Mével E 2009 Phys. Rev. A 80 011404Google Scholar

    [24]

    Klünder K, Dahlström J, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011 Phys. Rev. Lett. 106 143002Google Scholar

    [25]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201Google Scholar

    [26]

    Jiang Y J, Liang Y Y, Gao Y T, Zhao K, Xu S Y, Wang J, He X K, Teng H, Zhu J F, Chen Y L, Wei Z Y 2020 Chin. Phys. B 29 013206Google Scholar

    [27]

    Zhong S Y, Teng H, Zhu X X, Gao Y T, Wang K J, Wang X Z, Wang Y M, Yu S, Zhao K, Wei Z Y 2023 Chin. Opt. Lett. 21 113201Google Scholar

    [28]

    Lucchini M, Brügmann M, Ludwig A, Gallmann L, Keller U, Feurer T 2015 Opt. Express 23 29502Google Scholar

    [29]

    Kheifets A S, Bray A W 2021 Phys. Rev. A 103 L011101Google Scholar

    [30]

    Cattaneo L, Vos J, Lucchini M, Gallmann L, Cirelli C, Keller U 2016 Opt. Express 24 29060Google Scholar

  • [1] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [2] 阿秒物理专题编者按. 物理学报, 2022, 71(23): 230101. doi: 10.7498/aps.71.230101
    [3] 陈高. 利用三色组合脉冲激光获得孤立阿秒脉冲发射. 物理学报, 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [4] 宋浩, 吕孝源, 朱若碧, 陈高. 利用脉宽10 fs偏振控制脉冲获得孤立阿秒脉冲. 物理学报, 2019, 68(18): 184201. doi: 10.7498/aps.68.20190392
    [5] 黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义. 基于瞬态光栅频率分辨光学开关装置的阿秒延时相位控制. 物理学报, 2018, 67(21): 214202. doi: 10.7498/aps.67.20181570
    [6] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [7] 陈基根, 曾思良, 杨玉军, 程超. 三色激光控制量子路径生成短于30阿秒的孤立脉冲. 物理学报, 2012, 61(12): 123201. doi: 10.7498/aps.61.123201
    [8] 夏昌龙, 刘学深. 任意夹角的双色偏振激光作用下孤立阿秒脉冲的产生. 物理学报, 2012, 61(4): 043303. doi: 10.7498/aps.61.043303
    [9] 孟健, 陈高, 刘胜男. 多周期双色场方案下附加脉冲频率对阿秒脉冲产生的影响. 物理学报, 2012, 61(20): 203202. doi: 10.7498/aps.61.203202
    [10] 陆莹瑛, 曾志男, 郑颖辉, 邹璞, 刘灿东, 龚成, 李儒新, 徐至展. 双色光场驱动产生单个阿秒脉冲过程中的宏观效应. 物理学报, 2011, 60(10): 103202. doi: 10.7498/aps.60.103202
    [11] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲. 物理学报, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [12] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [13] 洪伟毅, 杨振宇, 兰鹏飞, 陆培祥. 利用低频场控制轨道直接产生低于50阿秒的单个脉冲. 物理学报, 2008, 57(9): 5853-5858. doi: 10.7498/aps.57.5853
    [14] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生. 物理学报, 2008, 57(12): 7848-7854. doi: 10.7498/aps.57.7848
    [15] 雷 亮, 文锦辉, 焦中兴, 赖天树, 林位株. 飞秒脉冲振幅和相位的无干涉条纹重构法测量. 物理学报, 2008, 57(1): 307-312. doi: 10.7498/aps.57.307
    [16] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [17] 曹 伟, 兰鹏飞, 陆培祥. 紧聚焦激光束作用于电子实现单个阿秒脉冲输出. 物理学报, 2006, 55(5): 2115-2121. doi: 10.7498/aps.55.2115
    [18] 郑 君, 盛政明, 张 杰. 高能电子与超强激光束作用产生的阿秒脉冲列. 物理学报, 2005, 54(6): 2638-2644. doi: 10.7498/aps.54.2638
    [19] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, 2005, 54(6): 2653-2661. doi: 10.7498/aps.54.2653
    [20] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
计量
  • 文章访问数:  2262
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-04-27
  • 上网日期:  2024-04-29
  • 刊出日期:  2024-06-20

/

返回文章
返回