搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶态二氧化硅中性氧空位缺陷的氢钝化机理与反应路径的研究

王禹齐 赵耀林 喻晨曦 张俊

引用本文:
Citation:

非晶态二氧化硅中性氧空位缺陷的氢钝化机理与反应路径的研究

王禹齐, 赵耀林, 喻晨曦, 张俊

Mechanisms of Hydrogen Passivation and Reaction Pathways for Neutral Oxygen Vacancies in Amorphous Silica

WANG Yuqi, ZHAO Yaolin, Yu Chenxi, ZHANG Jun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文基于第一性原理方法研究了非晶态二氧化硅中性氧空位缺陷及其与氢原子的反应机理。结果显示,非晶态二氧化硅中存在5种稳定中性氧空位缺陷构型,相应的缺陷形成能与缺陷硅原子间距呈现显著正相关关系。其中,VD构型因形成能最低可能是辐照或制备过程中的主要缺陷,VFVB构型的费米接触与Eγ′中心相近,而VDVBP4VDSi构型因电子成对存在导致费米接触为零。氢原子与中性氧空位缺陷通过形成Si-H键或硅羟基两种钝化方式可产生两类共7种中性氢化氧空位缺陷。电子定域化函数与EPR模拟分析发现,VHBBVHBM构型与Eγ′中心的EPR参数高度接近,表明氢钝化过程可能干扰E′中心的识别。VBBOH构型中硅羟基的生成可为氧化层和界面处水分子的形成提供理论依据。研究获得了氢诱导缺陷跨网格迁移以及生成硅羟基的路径,并揭示了氢原子具有钝化原始缺陷和诱发次生缺陷的双重作用。这些发现可为双极型器件低剂量率辐射损伤增强效应提供微观机理解释。
    Amorphous silica (a-SiO2), with excellent insulating properties, uniform disordered structure and good thermal stability, is the preferred material for field oxide layers, gate insulation layers and passivation layers in numerous semiconductor devices. However, in space environments, oxygen vacancies resulted from high-energy particle radiation and their interactions with hydrogen atoms in a-SiO2 could lead to enhanced low-dose-rate sensitivity, potentially causing threshold voltage shifts and leakage current increases in semiconductor devices. These seriously threaten the operation safety of spacecraft, and the exploration of related reaction mechanisms is crucial. A first-principles calculation is employed to investigate the neutral oxygen vacancies in amorphous silica and their reaction mechanisms with hydrogen atoms. Five types of neutral oxygen vacancies are identified, namely VD, VB, VF, VBP4 and VDSi configurations. A significant positive correlation is observed between the defect formation energy and the distance between two defect silicon atoms. The VD configuration may become the major defect type in irradiation or fabrication due to the lowest defect formation energy. VF and VB configurations display comparable Fermi contacts to those of Eγ′ centers. The presence of electron pairs leads to zero fermi contacts in VD, VBP4 and VDSi configurations. To reactions between oxygen vacancies and hydrogen atoms, the previous investigations often pay more attention to the reactions with hydrogen atoms at the middle-sites of oxygen vacancies. And, a critical characteristic of the disordered a-SiO2 structure is neglected by this approach: the reactions may extend into the neighboring network and occur at side-sites of oxygen defects. For a full understanding of actual reactions, both the middle-sites and side-sites are considered for hydrogen atoms in present investigations. It’s revealed that hydrogen atoms passivate neutral oxygen vacancies through two distinct mechanisms: Si-H bond formation or silanol group generation. These processes yield two classes of neutral hydrogenated oxygen vacancies, VH and VOH configurations, which can be further classified into seven distinct configurations based on the orientation of dangling bonds and Si-H bonds. By combining the analyses of ELF maps and EPR simulations, it is demonstrated that VBB H and VBM H configurations have comparable EPR parameters to those of Eγ′ center, implying that hydrogen passivation processes may interfere with the identification of E′ center. The formation of silanol group in VBB OH configuration provides theoretical bases for explaining water molecules formation within oxide layers and at interfaces. This study elucidates the hydrogen-induced crossnetwork migration and silanol group formation pathway, collectively revealing the dual role of hydrogen in passivating defects and inducing secondary defects. A microscopic explanation is derived from these findings for the enhanced low dose rate sensitivity in bipolar devices.
  • [1]

    Kajihara K, Miura T, Kamioka H, Aiba A, Uramoto M, Morimoto Y, Hirano M, Skuja L, Hosono H 2008 Journal of Non-Crystalline Solids 354224

    [2]

    Füssel W, Schmidt M, Flietner H 1992 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 65238

    [3]

    Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Transactions on Nuclear Science 472289

    [4]

    Yue Y, Wang J, Zhang Y, Song Y, Zuo X 2018 Physica B: Condensed Matter 5335

    [5]

    Shen X, Puzyrev Y S, Fleetwood D M, Schrimpf R D, Pantelides S T 2015 IEEE Transactions on Nuclear Science 622169

    [6]

    Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Transactions on Nuclear Science 381342

    [7]

    Pershenkov V S, Petrov A S, Bakerenkov A S, Ulimov V N, Felytsyn V A, Rodin A S, Belyakov V V, Telets V A, Shurenkov V V 2017 Microelectronics Reliability 76-77703

    [8]

    Zhou H, Song Y, Liu Y, Zhang Y 2020 Eur. Phys. J. Plus 135909

    [9]

    Hjalmarson H P, Pease R L, Devine R A B 2008 IEEE Transactions on Nuclear Science 553009

    [10]

    Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Transactions on Nuclear Science 501901

    [11]

    Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A, Pantelides S T 2002 IEEE Transactions on Nuclear Science 492650

    [12]

    Witczak S C, Lacoe R C, Mayer D C, Fleetwood D M, Schrimpf R D, Galloway K F 1998 IEEE Transactions on Nuclear Science 452339

    [13]

    Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Transactions on Nuclear Science 411871

    [14]

    Messina F, Cannas M 2007 J. Phys. Chem. C 1116663

    [15]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Transactions on Nuclear Science 553169

    [16]

    Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Transactions on Nuclear Science 541913

    [17]

    Morana A, Cannas M, Girard S, Boukenter A, Vaccaro L, Périsse J, Macé J R, Ouerdane Y, Boscaino R 2013 Opt. Mater. Express, OME 31769

    [18]

    Tomashuk A L, Zabezhailov M O 2011 Journal of Applied Physics 109083103

    [19]

    Saito K, Ito M, Ikushima A J, Funahashi S, Imamura K 2004 Journal of Non-Crystalline Solids 347289

    [20]

    Weeks R A 1956 Journal of Applied Physics 271376

    [21]

    Nelson C M, Weeks R A 1960 Journal of the American Ceramic Society 43396

    [22]

    Weeks R A, Nelson C M 1960 Journal of the American Ceramic Society 43399

    [23]

    Griscom D L 1984 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1481

    [24]

    Griscom D L 1985 MRS Online Proceedings Library (OPL) 61213

    [25]

    Boero M, Oshiyama A, Silvestrelli P L 2004 Mod. Phys. Lett. B 18707

    [26]

    Boero M, Oshiyama A, Silvestrelli P L 2003 Phys. Rev. Lett. 91206401

    [27]

    Wang Y, Zhao Y, Chen Z, Jia Z, Tong D, Nie S, Han Z 2024 The Journal of Chemical Physics 161034705

    [28]

    Yue Y, Song Y, Zuo X 2017 AIP Advances 7015309

    [29]

    Chavez J R, Karna S P, Vanheusden K, Brothers C P, Pugh R D, Singaraju B K, Warren W L, Devine R A B 1997 IEEE Transactions on Nuclear Science 441799

    [30]

    Mukhopadhyay S, Sushko P V, Mashkov V A, Shluger A L 2005 J. Phys.: Condens. Matter 171311

    [31]

    Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 3812772

    [32]

    Blöchl P E 2000 Phys. Rev. B 626158

    [33]

    Skuja L 1998 Journal of Non-Crystalline Solids 23916

    [34]

    Pantelides S T, Rashkeev S N, Fleetwood D M, Schrimpf R D 2000 IEEE Transactions on Nuclear Science 472262

    [35]

    Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Transactions on Nuclear Science 472289

    [36]

    McLean F B 1980 IEEE Transactions on Nuclear Science 271651

    [37]

    Saks N S, Klein R B, Griscom D L 1988 IEEE Transactions on Nuclear Science 351234

    [38]

    El-Sayed A M, Wimmer Y, Goes W, Grasser T, Afanas’ev V V, Shluger A L 2015 Phys. Rev. B 92014107

    [39]

    El-Sayed A M, Watkins M B, Grasser T, Afanas’ev V V, Shluger A L 2015 Microelectronic Engineering 147141

    [40]

    Rivera A, van Veen A, Schut H, de Nijs J M M, Balk P 2002 Solid-State Electronics 461775

    [41]

    Kato K 2012 Phys. Rev. B 85085307

    [42]

    Yao P, Song Y, Zuo X 2021 Superlattices and Microstructures 156106962

    [43]

    Hong Z C, Yao P, Liu Y, Zuo X 2022 Chinese Phys. B 31057101

    [44]

    VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J 2005 Computer Physics Communications 167103

    [45]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 773865

    [46]

    VandeVondele J, Hutter J 2007 J. Chem. Phys. 127114105

    [47]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 541703

    [48]

    BROYDEN C G 1970 IMA Journal of Applied Mathematics 6222

    [49]

    Fletcher R 1970 The Computer Journal 13317

    [50]

    Goldfarb D 1970 Math. Comp. 2423

    [51]

    Shanno D F 1970 Math. Comp. 24647

    [52]

    Henkelman G, Uberuaga B P, Jónsson H 2000 The Journal of Chemical Physics 1139901

    [53]

    Becke A D, Edgecombe K E 1990 The Journal of Chemical Physics 925397

    [54]

    Lu T, Chen F W 2011 Acta Phys. -Chem. Sin. 272786(in Chinese) [卢天, 陈飞武2011物理化学学报272786]

    [55]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86253

    [56]

    Pickard C J, Mauri F 2002 Phys. Rev. Lett. 88086403

    [57]

    Yazyev O V, Tavernelli I, Helm L, Röthlisberger U 2005 Phys. Rev. B 71115110

    [58]

    Bahramy M S, Sluiter M H F, Kawazoe Y 2007 Phys. Rev. B 76035124

    [59]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S de, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21395502

    [60]

    Charpentier T 2011 Solid State Nuclear Magnetic Resonance 401

    [61]

    Pickard C J, Mauri F 2001 Phys. Rev. B 63245101

    [62]

    Le Roux S, Petkov V 2010 J Appl Cryst 43181

    [63]

    Goetzke K, Klein H J 1991 Journal of Non-Crystalline Solids 127215

    [64]

    Yuan X, Cormack A N 2002 Computational Materials Science 24343

    [65]

    Van Ginhoven R M, Jónsson H, Corrales L R 2005 Phys. Rev. B 71024208

    [66]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70195203

    [67]

    Giacomazzi L, Martin-Samos L, Boukenter A, Ouerdane Y, Girard S, Richard N 2014 Phys. Rev. B 90014108

    [68]

    Pantelides S T, Tsetseris L, Rashkeev S N, Zhou X J, Fleetwood D M, Schrimpf R D 2007 Microelectronics Reliability 47903

  • [1] 陈苏琪, 何峰. 强激光驱动产生的氢原子高次谐波中的法诺共振. 物理学报, doi: 10.7498/aps.74.20250617
    [2] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, doi: 10.7498/aps.69.20201231
    [3] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算. 物理学报, doi: 10.7498/aps.67.20180626
    [4] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, doi: 10.7498/aps.66.067202
    [5] 杨亮, 王才壮, 林仕伟, 曹阳. 氧原子在钛晶体中扩散的第一性原理研究. 物理学报, doi: 10.7498/aps.66.116601
    [6] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, doi: 10.7498/aps.66.216801
    [7] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, doi: 10.7498/aps.64.013101
    [8] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, doi: 10.7498/aps.64.026602
    [9] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, doi: 10.7498/aps.63.207301
    [10] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, doi: 10.7498/aps.62.206102
    [11] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.62.127301
    [12] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性. 物理学报, doi: 10.7498/aps.62.074201
    [13] 卢金炼, 曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究. 物理学报, doi: 10.7498/aps.61.148801
    [14] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, doi: 10.7498/aps.61.047101
    [15] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, doi: 10.7498/aps.59.4170
    [16] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计. 物理学报, doi: 10.7498/aps.58.4853
    [17] 杨冲, 杨春. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.58.5362
    [18] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, doi: 10.7498/aps.55.6042
    [19] 康 帅, 刘 强, 钟振祥, 张现周, 史庭云. 氢原子Rydberg态抗磁谱的高阶B-spline基组计算. 物理学报, doi: 10.7498/aps.55.3380
    [20] 李兴华, 杨亚天. 氢原子波函数的玻色算子表示. 物理学报, doi: 10.7498/aps.54.12
计量
  • 文章访问数:  214
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-08

/

返回文章
返回