搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通道靶对超强激光加速质子束的聚焦效应

杨思谦 周维民 王思明 矫金龙 张智猛 曹磊峰 谷渝秋 张保汉

引用本文:
Citation:

通道靶对超强激光加速质子束的聚焦效应

杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉

Focusing effect of channel target on ultra-intense laser-accelerated proton beam

Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han
PDF
导出引用
  • 发散角过大是制约超强激光与固体靶相互作用加速产生高能质子束应用的一个重大物理难题.本文提出了一种结构化的通道靶型,与超强激光相互作用可提高质子束的发散特性,通道壁上产生的横向电荷分离静电场可对质子有效聚焦.采用二维particle-in-cell粒子模拟程序对激光通道靶相互作用过程进行了研究,分析了加速质子束的性能特点.模拟结果表明,与传统平面靶相比,通道靶可以在不过多损失能量的情况下产生具有更好准直性的质子束,尤其当通道靶的直径与激光焦斑尺寸和质子源尺寸相当时,横向静电场能够有效聚焦质子束,并且可保证相对较高的激光能量利用率.
    In laser proton acceleration, the inevitable transverse divergence of proton beam restricts its applications in many fields. In this paper, a structured target with a properly wide channel attached to the backside of a foil is proposed, and the interaction of the ultra-short laser pulse with the structured channel target is investigated via two-dimensional particle-in-cell simulation. The simulations show that for the structured channel target, electrons on the front surface are heated by the incident high-intensity laser pulse and then the induced hot electrons transport through the target to the rear surface, building an electrostatic field in the longitudinal direction to accelerate the protons to high energies as the typical target normal sheath acceleration scheme. In the case of the structured channel target, the simulation results indicate that a strong transverse electrostatic field is created by charge separation along the inner surface of the channel while hot electrons propagate along the channel side walls under the guidance of self-induced magnetic and electric fields, which can focus the emitted proton beam transversely, leading to a smaller divergence. By comparing the channel target case with the traditional foil target case under the same conditions, it is found that the divergence angle of the proton beam from the channel target is reduced significantly. Protons with energies above 3 MeV have a divergence angle of 5.3° at the time of 500 fs in the channel target case, while the value is 17.1° in the foil case for a laser intensity of 5.4×1019 W/cm2. Additionally, the effect of the channel target on the maximum proton energy is considered. The simulation results of the energy spectra reveal that the maximum proton cut-off energy of the channel target is about 1 MeV lower than that of the foil target. This small energy loss is due to the refluxing of the cold electrons on the channel walls, which suppresses the increasing of the sheath potential. Therefore, it is concluded that the focusing electric field can work on the proton beam effectively, leading to a better collimation with conserving the proton energy by using the proposed channel target. Especially when the inner diameter of the channel target is comparable to the laser focal spot size, the proton beam can be confined to a small divergence, and a relatively higher laser energy conversion efficiency can be ensured as well.
      通信作者: 周维民, zhouwm@caep.cn
    • 基金项目: 国家自然科学基金(批准号:11174259,11175165)和科学挑战专题(编号:TZ2016005)资助的课题.
      Corresponding author: Zhou Wei-Min, zhouwm@caep.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174259, 11175165) and the Science Challenge Project, China (Grant No. TZ2016005).
    [1]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [2]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436

    [3]

    Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240

    [4]

    Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001

    [5]

    Teng J, Zhu B, Wang J, Hong W, Yan Y H, Zhao Z Q, Cao L F, Gu Y Q 2013 Acta Phys. Sin. 62 114103(in Chinese)[滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋2013物理学报 62 114103]

    [6]

    Ledingham K W, Mckenna P, Singhal R P 2003 Science 300 1107

    [7]

    Remington B A, Arnett D, Drake R P, Takabe H 1999 Science 284 1488

    [8]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [9]

    Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001

    [10]

    Silva L O, Mori W B, Bingham R, Dawson J M, Antonsen T M, Mora P 2004 Phys. Rev. Lett. 92 015002

    [11]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363(in Chinese)[何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰2009物理学报 58 363]

    [12]

    Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser Part. Beams 24 291

    [13]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542

    [14]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [15]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [16]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002

    [17]

    Fuchs J, Cowan T E, Audebert P, Ruhl H, Gremillet L, Kemp A, Allen M, Blazevic A, Gauthier J C, Geissel M 2003 Phys. Rev. Lett. 91 255002

    [18]

    Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, Le Sage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801

    [19]

    Carroll D C, Mckenna P, Lundh O, Lindau F, Wahlström C G, Bandyopadhyay S, Pepler D, Neely D, Kar S, Simpson P T 2007 Phys. Rev. E 76 065401

    [20]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004

    [21]

    Sonobe R, Kawata S, Miyazaki S, Nakamura M, Kikuchi T 2005 Phys. Plasmas 12 073104

    [22]

    Toncian T, Borghesi M, Fuchs J, d'Humières E, Antici P, Audebert P, Brambrink E, Cecchetti C A, Pipahl A, Romagnani L, Willi O 2006 Science 312 410

    [23]

    Nakamura M, Kawata S, Sonobe R, Kong Q, Miyazaki S, Onuma N, Kikuchi T 2007 J. Appl. Phys. 101 113305

    [24]

    Kar S, Markey K, Simpson P T, Bellei C, Green J S, Nagel S R, Kneip S, Carroll D C, Dromey B, Willingale L, Clark E L, McKenna P, Najmudin Z, Krushelnick K, Norreys P, Clarke R J, Neely D, Borghesi M, Zepf M 2008 Phys. Rev. Lett. 100 105004

    [25]

    Yu T P, Ma Y Y, Chen M, Shao F Q, Yu M Y, Gu Y Q, Yin Y 2009 Phys. Plasmas 16 033112

    [26]

    Zhou W, Gu Y, Hong W, Cao L, Zhao Z, Ding Y, Zhang B, Cai H, Mima K 2010 Laser Part. Beams 28 585

    [27]

    Yang X H, Ma Y Y, Shao F Q, Xu H, Yu M Y, Gu Y Q, Yu T P, Yin Y, Tian C L, Kawata S 2010 Laser Part. Beams 28 319

    [28]

    Xiao K D, Zhou C T, Qiao B, He X T 2015 Phys. Plasmas 22 093112

    [29]

    Bake M A, Aimidula A, Xiaerding F, Rashidin R 2016 Phys. Plasmas 23 083107

    [30]

    Ban H Y, Gu Y J, Kong Q, Li Y Y, Zhu Z, Kawata S 2012 Chin. Phys. Lett. 29 035202

    [31]

    Yang S, Zhou W, Jiao J, Zhang Z, Cao L, Gu Y, Zhang B 2017 Phys. Plasmas 24 033106

    [32]

    Zhang Z M, He X T, Sheng Z M, Yu M Y 2012 Appl. Phys. Lett. 100 134103

    [33]

    Nakamura T, Kato S, Nagatomo H, Mima K 2004 Phys. Rev. Lett. 93 265002

  • [1]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [2]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436

    [3]

    Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240

    [4]

    Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001

    [5]

    Teng J, Zhu B, Wang J, Hong W, Yan Y H, Zhao Z Q, Cao L F, Gu Y Q 2013 Acta Phys. Sin. 62 114103(in Chinese)[滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋2013物理学报 62 114103]

    [6]

    Ledingham K W, Mckenna P, Singhal R P 2003 Science 300 1107

    [7]

    Remington B A, Arnett D, Drake R P, Takabe H 1999 Science 284 1488

    [8]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [9]

    Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001

    [10]

    Silva L O, Mori W B, Bingham R, Dawson J M, Antonsen T M, Mora P 2004 Phys. Rev. Lett. 92 015002

    [11]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363(in Chinese)[何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰2009物理学报 58 363]

    [12]

    Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser Part. Beams 24 291

    [13]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542

    [14]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [15]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [16]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002

    [17]

    Fuchs J, Cowan T E, Audebert P, Ruhl H, Gremillet L, Kemp A, Allen M, Blazevic A, Gauthier J C, Geissel M 2003 Phys. Rev. Lett. 91 255002

    [18]

    Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, Le Sage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801

    [19]

    Carroll D C, Mckenna P, Lundh O, Lindau F, Wahlström C G, Bandyopadhyay S, Pepler D, Neely D, Kar S, Simpson P T 2007 Phys. Rev. E 76 065401

    [20]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004

    [21]

    Sonobe R, Kawata S, Miyazaki S, Nakamura M, Kikuchi T 2005 Phys. Plasmas 12 073104

    [22]

    Toncian T, Borghesi M, Fuchs J, d'Humières E, Antici P, Audebert P, Brambrink E, Cecchetti C A, Pipahl A, Romagnani L, Willi O 2006 Science 312 410

    [23]

    Nakamura M, Kawata S, Sonobe R, Kong Q, Miyazaki S, Onuma N, Kikuchi T 2007 J. Appl. Phys. 101 113305

    [24]

    Kar S, Markey K, Simpson P T, Bellei C, Green J S, Nagel S R, Kneip S, Carroll D C, Dromey B, Willingale L, Clark E L, McKenna P, Najmudin Z, Krushelnick K, Norreys P, Clarke R J, Neely D, Borghesi M, Zepf M 2008 Phys. Rev. Lett. 100 105004

    [25]

    Yu T P, Ma Y Y, Chen M, Shao F Q, Yu M Y, Gu Y Q, Yin Y 2009 Phys. Plasmas 16 033112

    [26]

    Zhou W, Gu Y, Hong W, Cao L, Zhao Z, Ding Y, Zhang B, Cai H, Mima K 2010 Laser Part. Beams 28 585

    [27]

    Yang X H, Ma Y Y, Shao F Q, Xu H, Yu M Y, Gu Y Q, Yu T P, Yin Y, Tian C L, Kawata S 2010 Laser Part. Beams 28 319

    [28]

    Xiao K D, Zhou C T, Qiao B, He X T 2015 Phys. Plasmas 22 093112

    [29]

    Bake M A, Aimidula A, Xiaerding F, Rashidin R 2016 Phys. Plasmas 23 083107

    [30]

    Ban H Y, Gu Y J, Kong Q, Li Y Y, Zhu Z, Kawata S 2012 Chin. Phys. Lett. 29 035202

    [31]

    Yang S, Zhou W, Jiao J, Zhang Z, Cao L, Gu Y, Zhang B 2017 Phys. Plasmas 24 033106

    [32]

    Zhang Z M, He X T, Sheng Z M, Yu M Y 2012 Appl. Phys. Lett. 100 134103

    [33]

    Nakamura T, Kato S, Nagatomo H, Mima K 2004 Phys. Rev. Lett. 93 265002

  • [1] 王辉林, 廖艳林, 赵艳, 章文, 谌正艮. 基于多激光束驱动准单能高能质子束模拟研究. 物理学报, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [2] 杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平. Weibel不稳定性自生电磁场对探针质子束的偏转作用研究. 物理学报, 2019, 68(18): 185205. doi: 10.7498/aps.68.20190775
    [3] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析. 物理学报, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [4] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [5] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术. 物理学报, 2017, 66(20): 205201. doi: 10.7498/aps.66.205201
    [6] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束. 物理学报, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [7] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [8] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [9] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [10] 邹长林, 叶文华, 卢新培. 一维动理学数值模拟激光与等离子体的相互作用. 物理学报, 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [11] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [12] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究. 物理学报, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [13] 张枫, 黄硕, 李晓锋, 余芹, 顾彦珺, 孔青. 双束平行入射电子束引导的自注入电子加速效果的研究. 物理学报, 2013, 62(24): 242901. doi: 10.7498/aps.62.242901
    [14] 邹德滨, 卓红斌, 邵福球, 银燕, 马燕云, 田成林, 徐涵, 欧阳建明, 谢翔云, 陈德鹏. 单束激光脉冲俘获及放大机理的理论分析与数值模拟研究. 物理学报, 2012, 61(4): 045202. doi: 10.7498/aps.61.045202
    [15] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究. 物理学报, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [16] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [17] 巩华荣, 宫玉彬, 魏彦玉, 唐昌建, 薛东海, 王文祥. 考虑到束-波相互作用的速调管离子噪声二维模拟. 物理学报, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [18] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响. 物理学报, 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [19] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究. 物理学报, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [20] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
计量
  • 文章访问数:  5360
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-20
  • 修回日期:  2017-05-04
  • 刊出日期:  2017-09-05

/

返回文章
返回