搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强圆偏振激光直接加速产生超高能量电子束

尹传磊 王伟民 廖国前 李梦超 李玉同 张杰

引用本文:
Citation:

超强圆偏振激光直接加速产生超高能量电子束

尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰

Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses

Yin Chuan-Lei, Wang Wei-Min, Liao Guo-Qian, Li Meng-Chao, Li Yu-Tong, Zhang Jie
PDF
导出引用
  • 研究表明, 峰值强度为1022–1025 W/cm2量级的圆偏振激光脉冲的有质动力场可以直接加速并产生GeV–TeV的单能电子束, 其中被加速电子的能量与激光脉冲的峰值强度成线性定标关系. 为了获得更高能量的电子束, 通过对一维解析模型的分析得到: 如果电子束在激光传播的方向上具一个初始能量E0, 那么这种线性的定标关系可以被打破, 被加速电子束最终的能量可以被放大E0倍. 这是由于具有一定初始能量的电子束不容易被激光脉冲抛在后面, 进而获得更高的加速距离. 二维粒子模拟结果显示: 当电子束的初始能量E0为MeV量级时这个方法是有效的, 而当E0过大时这个方法失效. 这是因为当电子的加速距离远大于激光脉冲的瑞利长度时, 激光强度的衰减使得电子束的加速错过了最佳加速场.
    The earlier research showed that circularly polarized laser pulses with peak intensities in a range of 1022-1025 W/cm2 can directly accelerate and generate GeV-TeV monoenergetic electron beams with a linear energy scaling with the laser intensity. To obtain higher energy electron beams, a scheme is proposed to use an electron beam with an initial energy E0 along the laser propagation direction. This scheme can overcome the linear energy scaling with E0=0 obtained previously and enhance the beam energy by E0 folds. This is because an electron beam with an initial energy can move with the laser pulse together and therefore obtain a longer acceleration distance. Two-dimensional particle-in-cell simulation shows that this scheme is effective only for the electron beams initially with low energy on the order of MeV. With overhigh energy, electrons will miss the optimum acceleration field because the electron acceleration distance is much longer than the Rayleigh distance and the laser intensity is significantly attenuated.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CBA01501)和国家自然科学基金(批准号: 11105217, 11375261, 11375262)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2013CBA01501) and the National Natural Science Foundation of China (Grant Nos. 11105217, 11375261, 11375262).
    [1]

    DesRosiers C, Moskvin V, Bielajew A F, Papiez L 2000 Phys. Med. Biol. 45 1781

    [2]

    Glinec Y Y, Faure J, Malka V V, Fuchs T, Szymanowski H, Oelfke U 2006 Med. Phys. 33 155

    [3]

    Glinec Y, Faure J, Le Dain L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F, Mercier B, Malka V 2005 Phys. Rev. Lett. 94 025003

    [4]

    Kneip S, McGuffey C, Martins J L, Martins S F, Bellei C, Chvykov V, Dollar F, Fonseca R, Huntington C, Kalintchenko G, Maksimchuk A, Mangles S P D, Matsuoka T, Nagel S R, Palmer C A J, Schreiber J, Phuoc K T, Thomas A G R, Yanovsky V, Silva L O, Krushelnick K, Najmudin Z 2010 Nature Phys. 6 980

    [5]

    Cipiccia S, Islam M R, Ersfeld B, Shanks R P, Brunetti E, Vieux G, Yang X, Issac R C, Wiggins S M, Welsh G H, Anania M P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M, Jaroszynski D A 2011 Nature Phys. 7 867

    [6]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nature Photon. 6 308

    [7]

    Chen L M, Yan W C, Li D Z, Hu Z D, Zhang L, Wang W M, Hafz N A M, Mao J Y, Huang K, Ma Y, Zhao J R, Ma J L, Li Y T, Lu X, Sheng Z M, Wei Z Y, Gao J, Zhang J 2013 Sci. Report 3 1912

    [8]

    Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104

    [9]

    Leemans W P, Geddes C G R, Faure J, Toth C, van Tilborg J, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J, Martin M C 2003 Phys. Rev. Lett. 91 074802

    [10]

    Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L 2007 Phys. Rev. Lett. 99 043901

    [11]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 36 2608

    [12]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2014 Phys. Rev. A 90 023808

    [13]

    Pukhov A, Meyer-ter-vehn J 2002 Appl. Phys. B 74 355

    [14]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [15]

    Geddes C, Toth C, van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538

    [16]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordi-enko S, Lefebvre E, Rousseau J, Burgy F, Malka V 2004 Nature 431 541

    [17]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002

    [18]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301

    [19]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737

    [20]

    Wang W M, Sheng Z M, Zhang J 2008 Appl. Phys. Lett. 93 201502

    [21]

    Hafz N A M, Jeong T M, Choi I W, Lee S K, Pae K H, Kulagin V V, Sung J H, Yu T J, Hong K H, Hosokai T, Cary J R, Ko D K, Lee J 2008 Nature Photon. 2 571

    [22]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001

    [23]

    Leemans W P, Nagler B, Gonsalves A J, Toth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696

    [24]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Toth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002

    [25]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nature Commun. 4 1988

    [26]

    Wang W M, Sheng Z M, Zeng M, Liu Y, Hu Z D, Kawata S, Zheng C Y, Mori W B, ChenL M, Li Y T, Zhang J 2012 Appl. Phys. Lett. 101 184104

    [27]

    Wang W M, Sheng Z M, Li Y T, Chen L M, Kawata S, Zhang J 2010 Phys. Rev. ST Accel. Beams 13 071301

    [28]

    Heisenberg W, Euler H 1936 Z. Phys. 98 714

    [29]

    Dittrich W, Gies H 2000 Probing the Quantum Vacuum (Berlin: Springer-Verlag)

    [30]

    Sun G Z, Ott E, Lee Y C, Guzdar P 1987 Phys. Fluids 30 526

    [31]

    Borisov A B, Borovskiy A V, Shiryaev O B, Korobkin V V, Prokhorov A M, Solem J C, Luk T S, Boyer K, Rhodes C K 1992 Phys. Rev. A 45 5830

    [32]

    Wang W M, Zheng C Y 2006 Acta Phys. Sin. 55 310 (in Chinese) [王伟民, 郑春阳 2006 物理学报 55 310]

    [33]

    Wang F C, Shen B F, Zhang X M, Li X M, Jin Z Y 2007 Phys. Plasmas 14 083102

    [34]

    Yu W, Bychenkov V, Sentoku Y, Yu M Y, Sheng Z M, Mima K 2000 Phys. Rev. Lett. 85 570

    [35]

    Kulagin V V, Cherepenin V A, Suk H 2004 Phys. Plasmas 11 5239

    [36]

    Wang W M, Sheng Z M, Kawata S, Zheng C Y, Li Y T, Chen L M, Dong Q L, Lu X, Ma J L, Zhang J 2012 J. Plasma Phys. 78 461

    [37]

    Meyer-ter-Vehn J, Pukhov A, Sheng Z M 2001 in: Atoms, Solids, and Plasmas in Super-Intense Laser Fields Edited by Batani D et al. (Norwell MA: Kluwer Academic/Plenum Publishers) pp167-192

    [38]

    Sheng Z M, Mima K, Sentoku Y, Jovanovic M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004

    [39]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. E 91 013101

  • [1]

    DesRosiers C, Moskvin V, Bielajew A F, Papiez L 2000 Phys. Med. Biol. 45 1781

    [2]

    Glinec Y Y, Faure J, Malka V V, Fuchs T, Szymanowski H, Oelfke U 2006 Med. Phys. 33 155

    [3]

    Glinec Y, Faure J, Le Dain L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F, Mercier B, Malka V 2005 Phys. Rev. Lett. 94 025003

    [4]

    Kneip S, McGuffey C, Martins J L, Martins S F, Bellei C, Chvykov V, Dollar F, Fonseca R, Huntington C, Kalintchenko G, Maksimchuk A, Mangles S P D, Matsuoka T, Nagel S R, Palmer C A J, Schreiber J, Phuoc K T, Thomas A G R, Yanovsky V, Silva L O, Krushelnick K, Najmudin Z 2010 Nature Phys. 6 980

    [5]

    Cipiccia S, Islam M R, Ersfeld B, Shanks R P, Brunetti E, Vieux G, Yang X, Issac R C, Wiggins S M, Welsh G H, Anania M P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M, Jaroszynski D A 2011 Nature Phys. 7 867

    [6]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nature Photon. 6 308

    [7]

    Chen L M, Yan W C, Li D Z, Hu Z D, Zhang L, Wang W M, Hafz N A M, Mao J Y, Huang K, Ma Y, Zhao J R, Ma J L, Li Y T, Lu X, Sheng Z M, Wei Z Y, Gao J, Zhang J 2013 Sci. Report 3 1912

    [8]

    Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104

    [9]

    Leemans W P, Geddes C G R, Faure J, Toth C, van Tilborg J, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J, Martin M C 2003 Phys. Rev. Lett. 91 074802

    [10]

    Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L 2007 Phys. Rev. Lett. 99 043901

    [11]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 36 2608

    [12]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2014 Phys. Rev. A 90 023808

    [13]

    Pukhov A, Meyer-ter-vehn J 2002 Appl. Phys. B 74 355

    [14]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [15]

    Geddes C, Toth C, van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538

    [16]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordi-enko S, Lefebvre E, Rousseau J, Burgy F, Malka V 2004 Nature 431 541

    [17]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002

    [18]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301

    [19]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737

    [20]

    Wang W M, Sheng Z M, Zhang J 2008 Appl. Phys. Lett. 93 201502

    [21]

    Hafz N A M, Jeong T M, Choi I W, Lee S K, Pae K H, Kulagin V V, Sung J H, Yu T J, Hong K H, Hosokai T, Cary J R, Ko D K, Lee J 2008 Nature Photon. 2 571

    [22]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001

    [23]

    Leemans W P, Nagler B, Gonsalves A J, Toth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696

    [24]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Toth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002

    [25]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nature Commun. 4 1988

    [26]

    Wang W M, Sheng Z M, Zeng M, Liu Y, Hu Z D, Kawata S, Zheng C Y, Mori W B, ChenL M, Li Y T, Zhang J 2012 Appl. Phys. Lett. 101 184104

    [27]

    Wang W M, Sheng Z M, Li Y T, Chen L M, Kawata S, Zhang J 2010 Phys. Rev. ST Accel. Beams 13 071301

    [28]

    Heisenberg W, Euler H 1936 Z. Phys. 98 714

    [29]

    Dittrich W, Gies H 2000 Probing the Quantum Vacuum (Berlin: Springer-Verlag)

    [30]

    Sun G Z, Ott E, Lee Y C, Guzdar P 1987 Phys. Fluids 30 526

    [31]

    Borisov A B, Borovskiy A V, Shiryaev O B, Korobkin V V, Prokhorov A M, Solem J C, Luk T S, Boyer K, Rhodes C K 1992 Phys. Rev. A 45 5830

    [32]

    Wang W M, Zheng C Y 2006 Acta Phys. Sin. 55 310 (in Chinese) [王伟民, 郑春阳 2006 物理学报 55 310]

    [33]

    Wang F C, Shen B F, Zhang X M, Li X M, Jin Z Y 2007 Phys. Plasmas 14 083102

    [34]

    Yu W, Bychenkov V, Sentoku Y, Yu M Y, Sheng Z M, Mima K 2000 Phys. Rev. Lett. 85 570

    [35]

    Kulagin V V, Cherepenin V A, Suk H 2004 Phys. Plasmas 11 5239

    [36]

    Wang W M, Sheng Z M, Kawata S, Zheng C Y, Li Y T, Chen L M, Dong Q L, Lu X, Ma J L, Zhang J 2012 J. Plasma Phys. 78 461

    [37]

    Meyer-ter-Vehn J, Pukhov A, Sheng Z M 2001 in: Atoms, Solids, and Plasmas in Super-Intense Laser Fields Edited by Batani D et al. (Norwell MA: Kluwer Academic/Plenum Publishers) pp167-192

    [38]

    Sheng Z M, Mima K, Sentoku Y, Jovanovic M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004

    [39]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. E 91 013101

  • [1] 吉亮亮, 耿学松, 伍艺通, 沈百飞, 李儒新. 超强激光驱动的辐射反作用力效应与极化粒子加速. 物理学报, 2021, 70(8): 085203. doi: 10.7498/aps.70.20210091
    [2] 魏留磊, 蔡洪波, 张文帅, 田建民, 张恩浩, 熊俊, 朱少平. 超强激光与泡沫微结构靶相互作用提高强流电子束产额模拟研究. 物理学报, 2019, 68(9): 094101. doi: 10.7498/aps.68.20182291
    [3] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [4] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [5] 张凯, 仲佳勇, 裴晓星, 李玉同, 阪和洋一, 魏会冈, 袁大伟, 李芳, 韩波, 王琛, 贺昊, 尹传磊, 廖国前, 方远, 杨骕, 远晓辉, 梁贵云, 王菲鹿, 朱健强, 丁永坤, 张杰, 赵刚. 激光驱动磁重联过程中的喷流演化和电子能谱测量. 物理学报, 2015, 64(16): 165201. doi: 10.7498/aps.64.165201
    [6] 穆洁, 盛政明, 郑君, 张杰. 强激光与细锥靶相互作用产生强流高能电子束的研究. 物理学报, 2013, 62(13): 135202. doi: 10.7498/aps.62.135202
    [7] 王广辉, 王晓方, 董克攻. 超短超强激光导引及对电子加速的影响. 物理学报, 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [8] 闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生. 物理学报, 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [9] 夏志林. 激光作用下纳米限域介质材料中的电子加速过程. 物理学报, 2011, 60(5): 056804. doi: 10.7498/aps.60.056804
    [10] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验. 物理学报, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [11] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [12] 李百文, 郑春阳, 宋 敏, 刘占军. 高强度激光与等离子体相互作用中的受激Raman级联散射、光子凝聚以及大振幅电磁孤立子的产生与加速. 物理学报, 2006, 55(10): 5325-5337. doi: 10.7498/aps.55.5325
    [13] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [14] 陈 民, 盛政明, 郑 君, 张 杰. 强激光与高密度气体相互作用中电子和离子加速的数值模拟. 物理学报, 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [15] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究. 物理学报, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [16] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速. 物理学报, 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [17] 田友伟, 余 玮, 陆培祥, 何 峰, 马法君, 徐 涵, 静国梁, 钱列加. 紧聚焦的超短超强激光脉冲在真空中加速斜入射的相对论电子. 物理学报, 2005, 54(9): 4208-4212. doi: 10.7498/aps.54.4208
    [18] 何峰, 余玮, 陆培祥, 袁孝, 刘晶儒. 紧聚焦的飞秒激光脉冲在真空中对电子的加速. 物理学报, 2004, 53(1): 165-170. doi: 10.7498/aps.53.165
    [19] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [20] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究. 物理学报, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
计量
  • 文章访问数:  5833
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-05
  • 修回日期:  2015-01-19
  • 刊出日期:  2015-07-05

/

返回文章
返回