搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向空间辐射模拟的激光驱动双平面复合靶电子加速研究

仲沛霖 姜月千 资明 李翔城 赵娜 邓彦卿 吴桐 余润州 张国博 杨晓虎 马燕云

引用本文:
Citation:

面向空间辐射模拟的激光驱动双平面复合靶电子加速研究

仲沛霖, 姜月千, 资明, 李翔城, 赵娜, 邓彦卿, 吴桐, 余润州, 张国博, 杨晓虎, 马燕云

Laser driven electron acceleration from dual-plane composited targets for space radiation applications

ZHONG Peilin, JIANG Yueqian, ZI Ming, LI Xiangcheng, ZHAO Na, DENG Yanqing, WU Tong, YU Runzhou, ZHANG Guobo, YANG Xiaohu, MA Yanyun
科大讯飞翻译 (iFLYTEK Translation)
PDF
导出引用
  • 激光驱动的电子束在空间辐射环境模拟领域具有重要的应用价值。然而,由于激光直接辐照高密度固体靶所产生的电子束存在能谱可调谐性差、激光能量高等缺点,限制了其广泛应用。本文提出了利用激光驱动双平面复合靶电子加速模拟近地空间轨道电子辐射的方案。研究结果表明,高密度固体靶能够提供大量低能电子,其前表面放置的垂直平面靶则提供少量高能电子,使得所产生的电子束能谱与空间辐射电子能谱非常接近。为了评价本方案所产生能谱与空间辐射能谱的相似程度,本文提出一种评价能谱相似程度的评价方法,该方法可以对两种能谱给出定量评价。随着垂直平面靶密度增加,电子加速机制由有质动力加速逐渐过渡到表面有质动力加速,电子束能谱被有效地调制。同时,通过贝叶斯优化给出了最优的靶参数条件,可以获得与空间辐射能谱更加接近的电子束。研究结果为激光驱动电子束模拟不同轨道空间辐射环境实验研究提供了理论参考。
    Laser driven electron beam has important application value in the field of space radiation environment simulation. However, due to the shortcomings of poor spectrum tunability and high laser energy of the electron beam generated by laser direct irradiation of high-density solid targets, which limits to its wide application. In this paper, a scheme is proposed to simulate the orbital electron radiation in near-Earth space by using laser driven dual-plane composited target electron acceleration. It is found that the high-density solid target Ⅱ can provide a large number of low energy electrons, while the vertical plane target Ⅰ placed in the front surface of target II can provide a small number of high energy electrons, which makes the electron energy spectrum very close to that of the space radiation environment. In order to evaluate the similarity between the generated energy spectrum and the space radiation spectrum, an evaluation method for the similarity of energy spectra is proposed, which can describe the local and global similarity of the energy spectra. For vertical plane target Ⅰ with low density, the electron acceleration is dominated by the laser ponderomotive acceleration that generates a half-wavelength oscillation. As the density increases, the electron acceleration gradually transitions from the laser ponderomotive acceleration to the surface ponderomotive acceleration, and the electron beam energy spectrum is modulated effectively. Meanwhile, there is a linear relationship between the electron temperature of the generated electron beam and the length and density of the target Ⅰ, and the optimal target parameters are obtained by the Bayesian optimization, and the generated electron beam is much better matched to the space radiation environment. Compared with the laser driven single-plane target electron acceleration, the proposed scheme has better tunability of energy spectrum and lower requirement of laser intensity. The results provide a theoretical reference for the experimental study to simulate space radiation environments in different orbital by using laser-driven electron beams.
  • [1]

    Summeers D, Stone S 2022 J. Geophys. Res. Space Phys. 127 A030698.

    [2]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese) [黄建国, 韩建伟 2010 物理学报 59 2907]

    [3]

    Heynderickx D 2002 Int. J. Mod. Phys. A. 17 1675.

    [4]

    Ginet P G, Brien T P O, Huston S L, Johnston W R, Guild T B, Friedel R, Lindstrom C D, Roth C J, Whelan P, Quinn R A, Madden D, Morley S, Su Y J 2013 Space Sci Rev. 179 579.

    [5]

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 C. S. B. 62 978 (in Chinese) [陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978.]

    [6]

    Bengtson M T, Hooper C T, Hoffmann R C, Engelhart D P, Murray V J, Ferguson D C 2022 J Astronaut Sci. 69 149.

    [7]

    Hidding B, Königstein T, Willi O, Rosenzweig J B, Nakajima K, Pretzler G 2011 Ncucl Instrum Meth A. 636 31.

    [8]

    Königstein T, Karger O, Pretzler G, Rosenzweig J B, Hidding B 2012 J Plasma Phys. 78 383.

    [9]

    Hidding B, Karer O, Königstein T, Pretzler G, Manahan G G, Mckenna P, Gray R, Wilson R, Wiggins S M, Welsh G H, Beaton A, Delinikolas P, Jaroszynski D A, Rosenzweig J B, Karmakar A, Ferlet-Cavrois V, Cosrantino A, Muschitiello M, Daly E 2017 Sci. Rep. 7 42354.

    [10]

    Budrigă O, Ticos C M 2020 Plasma Phys. Control. Fusion 62 124001.

    [11]

    Li X F, Gibbon P, Hützen A, Büscher M, Weng S M, Chen M, Sheng Z M 2021 Phy. Rev. Lett. 104 015216.

    [12]

    Liu B, Shi M Y, Zepf M, Lei B F, Seipt D 2022 Phys. Rev. Lett. 129 274801.

    [13]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267.

    [14]

    Zhang G B, Chen M, Zou D B, Zhu X Z, Li B Y, Yang X H, Liu F, Yu T P, Ma Y Y, Sheng Z M 2022 Phys. Rev. Appl. 17 024051.

    [15]

    Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Phys. Rev. Lett. 126 214801.

    [16]

    Shou Y R, Wang P J, Seong G L, Yong J R, Hwang W L, Jin W Y, Jae H S, Seong K L, Pan Z, Kong D F, Mei Z S, Liu J B, Xu S R, Deng Z G, Zhou W M, Tajima T, Choi I W, Yan X Q, Chang H N, Ma W J 2023 Nat. Photonics. 17 137.

    [17]

    Carbajo S, Nanni E A, Wong L J, Moriena G, Keathley P D, Laurent G, Miller R J D, Kärtner F X 2016 Phys. Rev. Accel. Beams. 19 021303.

    [18]

    Babjak R, Willingale L, Arefiev A, Vranic M 2024 Phys. Rev. Lett. 132 125001.

    [19]

    Yu W, Bychenkov V, Sentoku Y, Yu M Y, Sheng Z M, Mima K 2000 Phy. Rev. Lett. 85 570.

    [20]

    He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phy. Rev. E. 68 046407.

    [21]

    Liu M W, Gong S F, Jin L, Jiang C L, Zhang Y T, Zhou B J 2015 Acta Phys. Sin. 64 145201(in Chinese) [刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举 2015 物理学报 64 145201]

    [22]

    Kruer W L, Estabrook 1985 Phys. Fluids. 28 430.

    [23]

    Lefebvre E, Bonnaud G 1997 Phy. Rev. E. 55 1.

    [24]

    Jing G L, Yu W, Li Y J, Zhao S H, Qian L J, Tian Y W, Liu B C 2006 Acta Phys. Sin. 55 3475 (in Chinese) [静国梁, 余玮, 李英骏, 赵诗华, 钱列加, 田友伟, 刘丙辰 2006 物理学报 55 3475]

    [25]

    Grimes M K, Rundquist A R, Lee Y S, Downer M C 1999 Phy. Rev. Lett. 82 4010.

    [26]

    Wang W T, Liu J S, Cai Y, Wang C, Liu L, Xia Z Q, Deng A H, Xu Y, Leng Y X, Li R X, Xu Z Z 2010 Phys. Plasmas 17 023108.

    [27]

    Chopimeau L, Leblanc, Blaclard, Denoeud A, Thévenet M, Vay J-L, Bonnaud G, Martin Ph, Vincenti H, Quéré F 2019 Phys. Rev. E. 9 011050.

    [28]

    Haines M G, Wei M S, Beg F N, Stephens R B 2009 Phy. Rev. Lett. 102 045008.

    [29]

    Ma W J, Kim Jong, Yu J Q, Choi W I, Singh P K, Lee Hwang W L, Sung J H, Seong K L, Lin C, Liao Q, Zhu J G, Lu H Y, Liu B, Wang H Y, Xu R F, He X T, Chen J E, Zepf M, Schreiber J, Yan X Q, Nam C H 2019 Phy. Rev. Lett. 122 014803.

    [30]

    Lad A D, Mishima Y, Singh P K, Li B Y, Adak A, Chatterjee G, Brijesh P, Dalui M, Inoue M, Jha J, Tata S, Trivilram M, Krishnamurthy M, Chen M, Sheng Z M, Tanaka K A, Kumar R G, Habara H 2022 Sci. Rep. 12 16818.

    [31]

    Shen X F, Pukhov A, Qiao B 2023 Plasma Phys. Control. Fusion 65 034005.

    [32]

    Yang X H, Dieckmann M E, Sarri G, Borghesi M 2012 Phys. Plasmas 19 113110.

    [33]

    Zhang G B, Ma Y Y, Han X, Nasr A M, Yang X H, Chen M, Yu T P, Zou D B, Liu J X, Yan J F, Zhuo H B, Gan L F, Tian L C, Shao F Q, Yin Y, Kawata S 2015 Phys. Plasmas 22 0831110.

    [34]

    Shou Y R, Wang P J, Lee S G, Rhee Y J, Lee H W, Yoon J W, Sung J H, Lee S K, Pan Z, Kong D, Mei Z S, Liu J B, Xu S R, Deng Z G, Zhou W M, Tajima T, Choi I W, Yan X Q, Nam C H, Ma W J 2023 Nat. Photonics. 117 137.

    [35]

    Zhou L, Yang Z B, Yang J, Wu Y G, Wei D S 2017 Chem. Phys. Lett. 677 7.

    [36]

    Fronya A A, Borisenko N G, Sahakyan A T, Puzyrev V N, Starodub A N, Yakushev O F 2019 Phys. Atom. Nuclei. 82 S1063778819100090.

    [37]

    Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003.

    [38]

    Hodson T O 2022 Geosci Model Dev. 15 5481.

    [39]

    Staerk C, Klinkhammer Hannah, Wistuba T, Maj C Mayr A 2024 BMC Med Genomics. 17 132.

    [40]

    Ma Y Y, Sheng Z S, Li Y T, Chang W W, Yuan X H, Chen M, Wu H C, Zheng J, Zhang J 2006 Phys. Plasmas 13 110702.

    [41]

    Marini S, Grech M, Kleij P S, Raynaud M, Riconda C 2023 Phys. Rev. Res. 5 013115.

    [42]

    Vladisavlevici I M, Vizman D, d'Humières E 2023 Plasma Phys. Control. Fusion 65 045012.

    [43]

    Box G E P 1953 Biometrika. 40 318.

    [44]

    Diessner M, O’Connor J, Wynn A, Laizet S, Guan Y, Wilson K, Whalley R D 2022 Front. Appl. Math. Stat. 08 1076296.

  • [1] 魏留磊, 蔡洪波, 张文帅, 田建民, 张恩浩, 熊俊, 朱少平. 超强激光与泡沫微结构靶相互作用提高强流电子束产额模拟研究. 物理学报, doi: 10.7498/aps.68.20182291
    [2] 张智猛, 张博, 吴凤娟, 洪伟, 滕建, 贺书凯, 谷渝秋. 等离子体密度对激光拉曼放大机理的影响. 物理学报, doi: 10.7498/aps.64.105201
    [3] 张凯, 仲佳勇, 裴晓星, 李玉同, 阪和洋一, 魏会冈, 袁大伟, 李芳, 韩波, 王琛, 贺昊, 尹传磊, 廖国前, 方远, 杨骕, 远晓辉, 梁贵云, 王菲鹿, 朱健强, 丁永坤, 张杰, 赵刚. 激光驱动磁重联过程中的喷流演化和电子能谱测量. 物理学报, doi: 10.7498/aps.64.165201
    [4] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束. 物理学报, doi: 10.7498/aps.64.144102
    [5] 穆洁, 盛政明, 郑君, 张杰. 强激光与细锥靶相互作用产生强流高能电子束的研究. 物理学报, doi: 10.7498/aps.62.135202
    [6] 王广辉, 王晓方, 董克攻. 超短超强激光导引及对电子加速的影响. 物理学报, doi: 10.7498/aps.61.165201
    [7] 夏志林. 激光作用下纳米限域介质材料中的电子加速过程. 物理学报, doi: 10.7498/aps.60.056804
    [8] 阚鹏志, 赵谡玲, 徐征, 孔超, 王大伟, 闫悦. ZnO纳米棒在聚[2-甲氧基-5-(2-乙基-己氧基)-1,4-苯撑乙烯撑]固态阴极射线发光器件中的应用研究. 物理学报, doi: 10.7498/aps.59.616
    [9] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验. 物理学报, doi: 10.7498/aps.59.8733
    [10] 朱斌, 谷渝秋, 王玉晓, 刘红杰, 吴玉迟, 王磊, 王剑, 温贤伦, 焦春晔, 滕建, 何颖玲. 超短超强激光与稀薄等离子体相互作用中后孤立子的观测. 物理学报, doi: 10.7498/aps.58.1100
    [11] 赵宗清, 丁永坤, 谷渝秋, 王向贤, 洪 伟, 王 剑, 郝轶聃, 袁永腾, 蒲以康. 超短超强激光与铜靶相互作用产生Kα源的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.56.7127
    [12] 远晓辉, 李玉同, 徐妙华, 于全芝, 王首钧, 张 杰, 赵 卫, 王光昶, 温贤伦, 焦春晔, 何颖伶, 张双根, 王向贤, 黄文忠, 谷渝秋. 超热电子产生的靶后相干渡越辐射光谱实验研究. 物理学报, doi: 10.7498/aps.55.5362
    [13] 李 昆, 李玉同, 张 军, 远晓辉, 徐妙华, 王兆华, 张 杰. 不同偏振态下的飞秒激光脉冲与铝靶相互作用中超热电子的产生. 物理学报, doi: 10.7498/aps.55.5909
    [14] 陈 民, 盛政明, 郑 君, 张 杰. 强激光与高密度气体相互作用中电子和离子加速的数值模拟. 物理学报, doi: 10.7498/aps.55.2381
    [15] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速. 物理学报, doi: 10.7498/aps.54.4203
    [16] 田友伟, 余 玮, 陆培祥, 何 峰, 马法君, 徐 涵, 静国梁, 钱列加. 紧聚焦的超短超强激光脉冲在真空中加速斜入射的相对论电子. 物理学报, doi: 10.7498/aps.54.4208
    [17] 何峰, 余玮, 陆培祥, 袁孝, 刘晶儒. 紧聚焦的飞秒激光脉冲在真空中对电子的加速. 物理学报, doi: 10.7498/aps.53.165
    [18] 朱鹏飞, 钱列加, 薛绍林, 林尊琪. 基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性分析与系统设计. 物理学报, doi: 10.7498/aps.52.587
    [19] 刘红军, 陈国夫, 赵卫, 王屹山, 赵尚弘. 用光学参量啁啾脉冲放大技术产生TW级激光脉冲系统的最优化设计. 物理学报, doi: 10.7498/aps.50.1717
    [20] 刘建胜, 李儒新, 朱频频, 徐至展, 刘晶儒. 大尺寸团簇在超短超强激光场中的动力学行为. 物理学报, doi: 10.7498/aps.50.1121
计量
  • 文章访问数:  177
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-23

/

返回文章
返回