-
激光驱动的电子束在空间辐射环境模拟领域具有重要的应用价值。然而,由于激光直接辐照高密度固体靶所产生的电子束存在能谱可调谐性差、激光能量高等缺点,限制了其广泛应用。本文提出了利用激光驱动双平面复合靶电子加速模拟近地空间轨道电子辐射的方案。研究结果表明,高密度固体靶能够提供大量低能电子,其前表面放置的垂直平面靶则提供少量高能电子,使得所产生的电子束能谱与空间辐射电子能谱非常接近。为了评价本方案所产生能谱与空间辐射能谱的相似程度,本文提出一种评价能谱相似程度的评价方法,该方法可以对两种能谱给出定量评价。随着垂直平面靶密度增加,电子加速机制由有质动力加速逐渐过渡到表面有质动力加速,电子束能谱被有效地调制。同时,通过贝叶斯优化给出了最优的靶参数条件,可以获得与空间辐射能谱更加接近的电子束。研究结果为激光驱动电子束模拟不同轨道空间辐射环境实验研究提供了理论参考。Laser driven electron beam has important application value in the field of space radiation environment simulation. However, due to the shortcomings of poor spectrum tunability and high laser energy of the electron beam generated by laser direct irradiation of high-density solid targets, which limits to its wide application. In this paper, a scheme is proposed to simulate the orbital electron radiation in near-Earth space by using laser driven dual-plane composited target electron acceleration. It is found that the high-density solid target Ⅱ can provide a large number of low energy electrons, while the vertical plane target Ⅰ placed in the front surface of target II can provide a small number of high energy electrons, which makes the electron energy spectrum very close to that of the space radiation environment. In order to evaluate the similarity between the generated energy spectrum and the space radiation spectrum, an evaluation method for the similarity of energy spectra is proposed, which can describe the local and global similarity of the energy spectra. For vertical plane target Ⅰ with low density, the electron acceleration is dominated by the laser ponderomotive acceleration that generates a half-wavelength oscillation. As the density increases, the electron acceleration gradually transitions from the laser ponderomotive acceleration to the surface ponderomotive acceleration, and the electron beam energy spectrum is modulated effectively. Meanwhile, there is a linear relationship between the electron temperature of the generated electron beam and the length and density of the target Ⅰ, and the optimal target parameters are obtained by the Bayesian optimization, and the generated electron beam is much better matched to the space radiation environment. Compared with the laser driven single-plane target electron acceleration, the proposed scheme has better tunability of energy spectrum and lower requirement of laser intensity. The results provide a theoretical reference for the experimental study to simulate space radiation environments in different orbital by using laser-driven electron beams.
-
Keywords:
- Ultra-short and ultra-intense laser /
- composite structure target /
- electron acceleration /
- space radiation environment simulation
-
[1] Summeers D, Stone S 2022 J. Geophys. Res. Space Phys. 127 A030698.
[2] Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese) [黄建国, 韩建伟 2010 物理学报 59 2907]
[3] Heynderickx D 2002 Int. J. Mod. Phys. A. 17 1675.
[4] Ginet P G, Brien T P O, Huston S L, Johnston W R, Guild T B, Friedel R, Lindstrom C D, Roth C J, Whelan P, Quinn R A, Madden D, Morley S, Su Y J 2013 Space Sci Rev. 179 579.
[5] Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 C. S. B. 62 978 (in Chinese) [陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978.]
[6] Bengtson M T, Hooper C T, Hoffmann R C, Engelhart D P, Murray V J, Ferguson D C 2022 J Astronaut Sci. 69 149.
[7] Hidding B, Königstein T, Willi O, Rosenzweig J B, Nakajima K, Pretzler G 2011 Ncucl Instrum Meth A. 636 31.
[8] Königstein T, Karger O, Pretzler G, Rosenzweig J B, Hidding B 2012 J Plasma Phys. 78 383.
[9] Hidding B, Karer O, Königstein T, Pretzler G, Manahan G G, Mckenna P, Gray R, Wilson R, Wiggins S M, Welsh G H, Beaton A, Delinikolas P, Jaroszynski D A, Rosenzweig J B, Karmakar A, Ferlet-Cavrois V, Cosrantino A, Muschitiello M, Daly E 2017 Sci. Rep. 7 42354.
[10] Budrigă O, Ticos C M 2020 Plasma Phys. Control. Fusion 62 124001.
[11] Li X F, Gibbon P, Hützen A, Büscher M, Weng S M, Chen M, Sheng Z M 2021 Phy. Rev. Lett. 104 015216.
[12] Liu B, Shi M Y, Zepf M, Lei B F, Seipt D 2022 Phys. Rev. Lett. 129 274801.
[13] Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267.
[14] Zhang G B, Chen M, Zou D B, Zhu X Z, Li B Y, Yang X H, Liu F, Yu T P, Ma Y Y, Sheng Z M 2022 Phys. Rev. Appl. 17 024051.
[15] Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Phys. Rev. Lett. 126 214801.
[16] Shou Y R, Wang P J, Seong G L, Yong J R, Hwang W L, Jin W Y, Jae H S, Seong K L, Pan Z, Kong D F, Mei Z S, Liu J B, Xu S R, Deng Z G, Zhou W M, Tajima T, Choi I W, Yan X Q, Chang H N, Ma W J 2023 Nat. Photonics. 17 137.
[17] Carbajo S, Nanni E A, Wong L J, Moriena G, Keathley P D, Laurent G, Miller R J D, Kärtner F X 2016 Phys. Rev. Accel. Beams. 19 021303.
[18] Babjak R, Willingale L, Arefiev A, Vranic M 2024 Phys. Rev. Lett. 132 125001.
[19] Yu W, Bychenkov V, Sentoku Y, Yu M Y, Sheng Z M, Mima K 2000 Phy. Rev. Lett. 85 570.
[20] He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phy. Rev. E. 68 046407.
[21] Liu M W, Gong S F, Jin L, Jiang C L, Zhang Y T, Zhou B J 2015 Acta Phys. Sin. 64 145201(in Chinese) [刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举 2015 物理学报 64 145201]
[22] Kruer W L, Estabrook 1985 Phys. Fluids. 28 430.
[23] Lefebvre E, Bonnaud G 1997 Phy. Rev. E. 55 1.
[24] Jing G L, Yu W, Li Y J, Zhao S H, Qian L J, Tian Y W, Liu B C 2006 Acta Phys. Sin. 55 3475 (in Chinese) [静国梁, 余玮, 李英骏, 赵诗华, 钱列加, 田友伟, 刘丙辰 2006 物理学报 55 3475]
[25] Grimes M K, Rundquist A R, Lee Y S, Downer M C 1999 Phy. Rev. Lett. 82 4010.
[26] Wang W T, Liu J S, Cai Y, Wang C, Liu L, Xia Z Q, Deng A H, Xu Y, Leng Y X, Li R X, Xu Z Z 2010 Phys. Plasmas 17 023108.
[27] Chopimeau L, Leblanc, Blaclard, Denoeud A, Thévenet M, Vay J-L, Bonnaud G, Martin Ph, Vincenti H, Quéré F 2019 Phys. Rev. E. 9 011050.
[28] Haines M G, Wei M S, Beg F N, Stephens R B 2009 Phy. Rev. Lett. 102 045008.
[29] Ma W J, Kim Jong, Yu J Q, Choi W I, Singh P K, Lee Hwang W L, Sung J H, Seong K L, Lin C, Liao Q, Zhu J G, Lu H Y, Liu B, Wang H Y, Xu R F, He X T, Chen J E, Zepf M, Schreiber J, Yan X Q, Nam C H 2019 Phy. Rev. Lett. 122 014803.
[30] Lad A D, Mishima Y, Singh P K, Li B Y, Adak A, Chatterjee G, Brijesh P, Dalui M, Inoue M, Jha J, Tata S, Trivilram M, Krishnamurthy M, Chen M, Sheng Z M, Tanaka K A, Kumar R G, Habara H 2022 Sci. Rep. 12 16818.
[31] Shen X F, Pukhov A, Qiao B 2023 Plasma Phys. Control. Fusion 65 034005.
[32] Yang X H, Dieckmann M E, Sarri G, Borghesi M 2012 Phys. Plasmas 19 113110.
[33] Zhang G B, Ma Y Y, Han X, Nasr A M, Yang X H, Chen M, Yu T P, Zou D B, Liu J X, Yan J F, Zhuo H B, Gan L F, Tian L C, Shao F Q, Yin Y, Kawata S 2015 Phys. Plasmas 22 0831110.
[34] Shou Y R, Wang P J, Lee S G, Rhee Y J, Lee H W, Yoon J W, Sung J H, Lee S K, Pan Z, Kong D, Mei Z S, Liu J B, Xu S R, Deng Z G, Zhou W M, Tajima T, Choi I W, Yan X Q, Nam C H, Ma W J 2023 Nat. Photonics. 117 137.
[35] Zhou L, Yang Z B, Yang J, Wu Y G, Wei D S 2017 Chem. Phys. Lett. 677 7.
[36] Fronya A A, Borisenko N G, Sahakyan A T, Puzyrev V N, Starodub A N, Yakushev O F 2019 Phys. Atom. Nuclei. 82 S1063778819100090.
[37] Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003.
[38] Hodson T O 2022 Geosci Model Dev. 15 5481.
[39] Staerk C, Klinkhammer Hannah, Wistuba T, Maj C Mayr A 2024 BMC Med Genomics. 17 132.
[40] Ma Y Y, Sheng Z S, Li Y T, Chang W W, Yuan X H, Chen M, Wu H C, Zheng J, Zhang J 2006 Phys. Plasmas 13 110702.
[41] Marini S, Grech M, Kleij P S, Raynaud M, Riconda C 2023 Phys. Rev. Res. 5 013115.
[42] Vladisavlevici I M, Vizman D, d'Humières E 2023 Plasma Phys. Control. Fusion 65 045012.
[43] Box G E P 1953 Biometrika. 40 318.
[44] Diessner M, O’Connor J, Wynn A, Laizet S, Guan Y, Wilson K, Whalley R D 2022 Front. Appl. Math. Stat. 08 1076296.
计量
- 文章访问数: 177
- PDF下载量: 7
- 被引次数: 0