搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响

胡梅 刘新国 谭瑞山

引用本文:
Citation:

碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响

胡梅, 刘新国, 谭瑞山

Influence of collision energy and reagent vibrational excitation on the stereodynamics of reaction Ar+H2+→ArH++H

Hu Mei, Liu Xin-Guo, Tan Rui-Shan
PDF
导出引用
  • 基于我们最近所构建的Ar+H2+→ArH++H(12A’) 反应的新势能面,采用准经典轨线法研究了碰撞能分别为0.48,0.77,1.24 eV 以及能量为0.48 eV 时反应物不同振动态下Ar+H2+→ArH++H反应的立体动力学性质. 结果显示在给定的碰撞能情况下,以及当反应物振动量子数由0 变到2 时计算的积分反应截面与实验值符合得较好. 通过比较发现,碰撞能对此反应k-j’ 关联函数P(θr) 分布的影响大于其受振动激发的影响,并且关于k-k’-j’ 三矢量相关的函数P(φr) 分布以及极化微分反应截面对碰撞能较敏感,同时发现振动激发对P(φr)分布和极化微分反应截面也有较大的影响.
    The quasi-classical trajectory is calculated for the reaction Ar+H2+→ArH++H (12A’) on the latest potential surface. The correlated integral reaction cross section, P(θr), P(φr) distribution and the polarization dependent differential cross sections polariztion dependent differential cross sections (PDDCSs) are discussed in detail. The results show that the integral reaction cross sections are well consistent with the experimental values at different collision energies and reagent vibrational excitations which indicates that our potential energy surface is accurate. The results indicate that the vibration excitation has less influence on the P(θr) distribution than the collision energy. The P(φr) distribution, and PDDCS are quite sensitive to collision energy and reagent vibrational excitation.
    • 基金项目: 国家自然科学基金(批准号:11274205)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274205).
    [1]

    Jorfi M, Honvault P 2011 J. Phys. Chem. A 115 8791

    [2]

    Campbell F M, Browning R, Latimer C J 1980 J. Phys. B 13 4257

    [3]

    Latimer C J, Campbell F M 1982 J. Phys. B 15 1765

    [4]

    Bilotta R M, Preuninger F N, Farrar J M 1980 J. Chem. Phys. 73 1637

    [5]

    Bilotta R M, Preuninger F N, Farrar J M 1980 Chem. Phys. Lett. 74 95

    [6]

    Bilotta R M, Farrar J M 1981 J. Chem. Phys. 74 1699

    [7]

    Houle F A, Anderson S L, Gerlich D, Turner T, Lee Y T 1982 J. Chem. Phys. 77 748

    [8]

    Houle F A, Anderson S L, Gerlich D, Turner T, Lee Y T 1981 Chem. Phys. Lett. 82 392

    [9]

    Liao C L, Xu R, Flesch G D, Bear M, Ng C Y 1990 J. Chem. Phys. 93 4818

    [10]

    Liao C L, Liao C X, Ng C Y 1985 J. Chem. Phys. 82 5489

    [11]

    Liao C L, Xu R, Shao G D, Nourbakhsh S, Flesch G D, Baer M, Ng C Y 1990 J. Chem. Phys. 93 4832

    [12]

    Ng C Y 1992 Adv. Chem. Phys. 82 401

    [13]

    Dressler R A, Chiu Y, Levandier D J, Tang X N, Hou Y, Chang C, Houchins C, Xu H, Ng C Y 2006 J. Chem. Phys. 125 132306

    [14]

    Qian X, Zhang T, Chiu Y, Levandier D J, Miller J S, Dressler R A, Ng C Y 2003 J. Chem. Phys. 118 2455

    [15]

    Kuntz P J, Roach A C 1972 J. Chem. Soc. 68 259

    [16]

    Bear M, Beswick J A 1979 Phys. Rev. A 19 1559

    [17]

    Chapman S 1985 J. Chem. Phys. 82 4033

    [18]

    Aguillon F, Sizun M 1997 J. Chem. Phys. 106 9551

    [19]

    Liu X G, Liu H R, Zhang Q G 2011 Chem. Phys. Lett. 507 24

    [20]

    Hu M, Xu W W, Liu X G, Tan R S, Li H Z 2013 J. Chem. Phys. 138 174305-1

    [21]

    Liu X G, Sun H Z, Liu H R, Zhang Q G 2010 Acta Phys. Sin. 59 779 (in Chinese) [刘新国, 孙海竹, 刘会荣, 张庆刚 2010 物理学报 59 779]

    [22]

    Xiao J, Yang C L, Wang M S 2012 Chin. Phys. B 21 043101

    [23]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [24]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 物理学报 58 6926]

    [25]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [26]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115

    [27]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

    [28]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Comput. Chem. 8 403

    [29]

    Aguado A, Paniagua M 1992 J. Chem. Phys. 96 1265

    [30]

    Aguado A, Tablero C, Paniagua M 1998 Comp. Phys. Commun. 108 259

    [31]

    Li W L, Wang M S, Yang C L, Liu W W, Sun C, Ren T Q 2007 Chem. Phys. 337 93

    [32]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [33]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. 283 463

    [34]

    Ma J J, Chen M D, Cong S L, Han K L 2006 Chem. Phys. 327 529

    [35]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [36]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [37]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [38]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [39]

    Zhang X, Han K L 2006 Int. Quantum Chem. 106 1815

    [40]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [41]

    Liao C L, Xu R, Flesch G D, Baer M, Ng C Y 1990 J. Chem. Phys. 93 4822

    [42]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2438

    [43]

    Han K L, He G Z, Lou N Q 1989 Chin. J. Chem. Phys. 2 323

  • [1]

    Jorfi M, Honvault P 2011 J. Phys. Chem. A 115 8791

    [2]

    Campbell F M, Browning R, Latimer C J 1980 J. Phys. B 13 4257

    [3]

    Latimer C J, Campbell F M 1982 J. Phys. B 15 1765

    [4]

    Bilotta R M, Preuninger F N, Farrar J M 1980 J. Chem. Phys. 73 1637

    [5]

    Bilotta R M, Preuninger F N, Farrar J M 1980 Chem. Phys. Lett. 74 95

    [6]

    Bilotta R M, Farrar J M 1981 J. Chem. Phys. 74 1699

    [7]

    Houle F A, Anderson S L, Gerlich D, Turner T, Lee Y T 1982 J. Chem. Phys. 77 748

    [8]

    Houle F A, Anderson S L, Gerlich D, Turner T, Lee Y T 1981 Chem. Phys. Lett. 82 392

    [9]

    Liao C L, Xu R, Flesch G D, Bear M, Ng C Y 1990 J. Chem. Phys. 93 4818

    [10]

    Liao C L, Liao C X, Ng C Y 1985 J. Chem. Phys. 82 5489

    [11]

    Liao C L, Xu R, Shao G D, Nourbakhsh S, Flesch G D, Baer M, Ng C Y 1990 J. Chem. Phys. 93 4832

    [12]

    Ng C Y 1992 Adv. Chem. Phys. 82 401

    [13]

    Dressler R A, Chiu Y, Levandier D J, Tang X N, Hou Y, Chang C, Houchins C, Xu H, Ng C Y 2006 J. Chem. Phys. 125 132306

    [14]

    Qian X, Zhang T, Chiu Y, Levandier D J, Miller J S, Dressler R A, Ng C Y 2003 J. Chem. Phys. 118 2455

    [15]

    Kuntz P J, Roach A C 1972 J. Chem. Soc. 68 259

    [16]

    Bear M, Beswick J A 1979 Phys. Rev. A 19 1559

    [17]

    Chapman S 1985 J. Chem. Phys. 82 4033

    [18]

    Aguillon F, Sizun M 1997 J. Chem. Phys. 106 9551

    [19]

    Liu X G, Liu H R, Zhang Q G 2011 Chem. Phys. Lett. 507 24

    [20]

    Hu M, Xu W W, Liu X G, Tan R S, Li H Z 2013 J. Chem. Phys. 138 174305-1

    [21]

    Liu X G, Sun H Z, Liu H R, Zhang Q G 2010 Acta Phys. Sin. 59 779 (in Chinese) [刘新国, 孙海竹, 刘会荣, 张庆刚 2010 物理学报 59 779]

    [22]

    Xiao J, Yang C L, Wang M S 2012 Chin. Phys. B 21 043101

    [23]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [24]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 物理学报 58 6926]

    [25]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [26]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115

    [27]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

    [28]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Comput. Chem. 8 403

    [29]

    Aguado A, Paniagua M 1992 J. Chem. Phys. 96 1265

    [30]

    Aguado A, Tablero C, Paniagua M 1998 Comp. Phys. Commun. 108 259

    [31]

    Li W L, Wang M S, Yang C L, Liu W W, Sun C, Ren T Q 2007 Chem. Phys. 337 93

    [32]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [33]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. 283 463

    [34]

    Ma J J, Chen M D, Cong S L, Han K L 2006 Chem. Phys. 327 529

    [35]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [36]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [37]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [38]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [39]

    Zhang X, Han K L 2006 Int. Quantum Chem. 106 1815

    [40]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [41]

    Liao C L, Xu R, Flesch G D, Baer M, Ng C Y 1990 J. Chem. Phys. 93 4822

    [42]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2438

    [43]

    Han K L, He G Z, Lou N Q 1989 Chin. J. Chem. Phys. 2 323

  • [1] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究. 物理学报, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [2] 唐晓平, 周灿华, 和小虎, 于东麒, 杨阳. 碰撞能对H+CH+→C++H2反应立体动力学性质的影响. 物理学报, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [3] 唐晓平, 和小虎, 周灿华, 杨阳. 反应物分子初始振动激发对H+CH+C++H2反应的影响. 物理学报, 2017, 66(12): 123401. doi: 10.7498/aps.66.123401
    [4] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响. 物理学报, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [5] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应. 物理学报, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [6] 马建军. 碰撞能对反应Sr+CH3I→SrI+CH3的立体动力学影响. 物理学报, 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [7] 许雪松, 杨鲲, 孙佳石, 尹淑慧. O+DCl→OD+Cl反应的动力学性质研究. 物理学报, 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [8] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质. 物理学报, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [9] 马建军. 反应物NO的转动激发对反应N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P)影响的立体动力学研究. 物理学报, 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [10] 谭瑞山, 刘新国, 胡梅. Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究. 物理学报, 2013, 62(7): 073105. doi: 10.7498/aps.62.073105
    [11] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响. 物理学报, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [12] 李红, 郑斌, 孟庆田. 转动激发对O+HBrOH+Br反应的立体动力学性质的准经典轨线理论研究. 物理学报, 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [13] 王平. C+OH(v=0—3, j=0—3)→CO+H反应的准经典轨线研究. 物理学报, 2011, 60(5): 053401. doi: 10.7498/aps.60.053401
    [14] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究. 物理学报, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [15] 刘新国, 孙海竹, 刘会荣, 张庆刚. O++H2及其同位素取代反应的立体动力学研究. 物理学报, 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [16] 许雪松, 张文芹, 金坤, 尹淑慧. 反应物分子初始振动激发对O+HCl→OH+Cl反应的立体动力学性质的影响. 物理学报, 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [17] 孔浩, 刘新国, 许文武, 梁景娟, 张庆刚. He+H+2及其同位素取代反应的立体动力学研究. 物理学报, 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [18] 潘 宇, 王凯俊, 方祯云, 汪先友, 彭庆军. 精确计算n-n重正化链图传播下n+n→2π0反应截面. 物理学报, 2008, 57(8): 4817-4825. doi: 10.7498/aps.57.4817
    [19] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 物理学报, 2008, 57(3): 1569-1575. doi: 10.7498/aps.57.1569
    [20] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究. 物理学报, 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
计量
  • 文章访问数:  5578
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-25
  • 修回日期:  2013-10-22
  • 刊出日期:  2014-01-05

/

返回文章
返回