搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

O++H2 → OH++H反应的动力学研究

袁美玲 李文涛

引用本文:
Citation:

O++H2 → OH++H反应的动力学研究

袁美玲, 李文涛

Dynamics studies of O+ + H2→ OH+ + H reaction

Yuan Mei-Ling, Li Wen-Tao
PDF
HTML
导出引用
  • 采用含时量子波包方法结合二阶分裂算符传播子对初始态为(v = 0, j = 0)的O+ + H2 → OH+ + H反应体系在0.01—1.00 eV的碰撞能范围内进行了态分辨理论水平上的动力学计算. 对反应概率、积分截面、微分截面以及固定初始态的热速率常数等动力学信息进行了计算并与文献报道的实验和理论结果进行了比较. 结果表明本文的理论结果与实验结果十分符合. 从微分截面的散射信息可知, 在低碰撞能范围内, 插入反应机制在反应中占据主导地位. 随着碰撞能的增加, 反应机制逐渐由插入机制变为抽取反应机制.
    In the present work, the long-range interaction potential part of potential energy surface (PES) of OH2+ system is revised and the new resulting PES apparently is more reasonable than the old one in the long-range part. Based on the new PES, the dynamics calculations of O+ +H2→ OH+ + H reaction are carried out at a state-to-state level of theory by using time-dependent quantum wave packet method with second order split operator in a collision energy range from 0.01 to 1.0 eV. The dynamic properties such as reaction probability, ro-vibrational resolved statereaction probability, integral cross section, differential cross section, and state specific rate constant are calculated and compared with available theoretical and experimental results. The results of ro-vibrational resolved state reaction probability reflect some dynamic properties such as resonances which is attributed to the deep well located on the reaction path. The vibrational resolved state reaction probability indicates that the excitation efficiency of the OH+ product is relatively low. The results of integral cross sections indicate that the present results are in better agreement with the experimental values than with previous theoretical calculations, especially in the low collision energy region. However, the state specific rate constant results underestimate the experimental values. The comparison betweenour calculations and the experimental results indicates that the contribution of the rotational excitation of H2 molecule should be included in the calculations. However, only the initial state v = 0, j = 0 is calculated in the present work. We suppose that the deviation of the present results from the experimental data is due to the fact that the rotational excitation of reactant isnot included in the present calculation. The differential cross section signals indicate that the complex-forming reaction mechanism isdominated in the case of low collision energy, but it transforms into abstract reaction mechanism as the collision energy further increases.
      通信作者: 李文涛, wtlee1982@163.com
    • 基金项目: 辽宁省教育厅青年项目(批准号: LQ2017001)资助的课题.
      Corresponding author: Li Wen-Tao, wtlee1982@163.com
    • Funds: Project supported by the Youth Fund of Education Department of Liaoning Province, China (Grant No. LQ2017001).
    [1]

    Duley W W, Williams D A 1984 Interstellar Chemistry (New York: Academic Press) p251

    [2]

    Armentrout P 2000 Int. J. Mass Spectrom. Ion Process. 200 21933

    [3]

    Jambrina P G, Alvarino J M, Gerlich D, Hankel M, Herrero V J, Saez-Rabanos V, Aoiz F J 2012 Phys. Chem. Chem. Phys. 14 3346Google Scholar

    [4]

    Wang B B, Han Y C, Gao W, Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926Google Scholar

    [5]

    Fehsenfeld F C, Schmeltekopf A L, Ferguson E E 1967 J. Chem. Phys. 46 2802Google Scholar

    [6]

    Kim J K, Theard L P, Huntress W T 1975 J. Chem. Phys. 62 45Google Scholar

    [7]

    Federer W, Villinger H, Howorka F, Lindinger W, Tosi P, Bassi D, Ferguson E 1984 Phys. Rev. Lett. 52 2084Google Scholar

    [8]

    Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308Google Scholar

    [9]

    Burley J, Ervin K M, Armentrout P 1987 Int. J. Mass Spectrom. Ion Process 80 153Google Scholar

    [10]

    Sunderlin L, Armentrout P 1990 Chem. Phys. Lett. 167 188Google Scholar

    [11]

    Flesch G D, Ng C Y 1991 J. Chem. Phys. 94 2372Google Scholar

    [12]

    Li X, Huang Y L, Flesch G D, Ng C Y 1997 J. Chem. Phys. 106 564Google Scholar

    [13]

    Gillen K T, Mahan B H, Winn J S 1973 J. Chem. Phys. 58 5373Google Scholar

    [14]

    Gillen K T, Mahan B H, Winn J S 1973 J. Chem. Phys. 59 6380Google Scholar

    [15]

    Ng C Y 2002 J. Phys. Chem. A 106 5953Google Scholar

    [16]

    Martínez R, Millán J, González M 2004 J. Chem. Phys. 120 4705Google Scholar

    [17]

    Martínez R, Sierra J D, González M 2005 J. Chem. Phys. 123 174312Google Scholar

    [18]

    Martínez R, Lucas J M, Giménez X, Aguilar A, González M 2006 J. Chem. Phys. 124 144301Google Scholar

    [19]

    Martínez R, Sierra J D, Gray S K, González M 2006 J. Chem. Phys. 125 164305Google Scholar

    [20]

    Kłos J, Bulut N, Akpinar S 2012 Chem. Phys. Lett. 532 22Google Scholar

    [21]

    Xu W, Li W, Lv S, Zhai H, Duan Z, Zhang P 2012 J. Phys. Chem. A 116 10882Google Scholar

    [22]

    Gómez-Carrasco S, Godard B, Lique F, Bulut N, Kłos J, Roncero O, Aguado A, Aoiz F J, Castillo J F, Goicoechea J R 2014 Astrophys. J. 794 33Google Scholar

    [23]

    Bulut N, Castillo J F, Jambrina P G, Kłos J, Roncero O, Aoiz F J, Bañares L 2015 J. Phys. Chem. A 119 11951Google Scholar

    [24]

    Li W T, Yuan J C, Yuan M L, Zhang Y, Yao M H, Sun Z G 2018 Phys. Chem. Chem. Phys. 20 1039Google Scholar

    [25]

    段志欣, 邱明辉, 姚翠霞 2014 物理学报 63 063402Google Scholar

    Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402Google Scholar

    [26]

    李文涛, 于文涛, 姚明海 2018 物理学报 67 103401Google Scholar

    Li W T, Yu W T, Yao M H 2018 Acta Phys. Sin. 67 103401Google Scholar

    [27]

    张静, 魏巍, 高守宝, 孟庆田 2015 物理学报 64 063101Google Scholar

    Zhang J, Wei W, Gao S B, Meng Q T 2015 Acta Phys. Sin. 64 063101Google Scholar

    [28]

    Zhao B, Sun Z G, Guo H 2016 J. Chem. Phys. 144 214303Google Scholar

    [29]

    Zhao B, Sun Z G, Guo H 2016 J. Chem. Phys. 144 064104Google Scholar

    [30]

    Li W T, Chen M D, Sun Z G 2015 Chin. J. Chem. Phys. 28 415Google Scholar

    [31]

    Fleck J A, Morris J R, Feit M D 1976 Appl. Phys. 10 129

  • 图 1  新旧两个势能面的长程相互作用势比较

    Fig. 1.  Comparison of the long range interaction potential for the old and new potential energy surfaces

    图 2  90°, 120°, 150°和180°的最小能量路径

    Fig. 2.  The minimum energy paths at 90°, 120°, 150°, and 180° angles

    图 3  对于几个选定的总角动量J在能量范围0—1.0 eV的反应概率

    Fig. 3.  The total reaction probabilities for several selected total angular momentum J in the collision energy from 0 to 1.0 eV

    图 4  总角动量J = 0反应概率的振动分辨

    Fig. 4.  The vibrational resolved reaction probabilities of the total angular momentum J = 0

    图 5  O+ + H2(v = 0, j = 0) → OH+ (v' = 0, j' ) + H反应在总角动量J = 0时转动分辨的反应概率

    Fig. 5.  Rotationally resolved reaction probabilities for the O+ + H2 (v = 0, j = 0) → OH+(v' = 0, j' ) + H reaction at total angular momentum J = 0

    图 6  O+ + H2反应的积分截面以及文献[22]的理论结果和文献[8]的实验结果

    Fig. 6.  The integral cross section of the O+ + H2 reaction as well as the theoretical and experimental results obtained from Ref. [22] and Ref. [8], respectively

    图 7  O+ + H2反应若干能量点的微分截面 (a)低能部分; (b) 高能部分

    Fig. 7.  The differential cross sections of O+ + H2 reaction for several collision energies: (a) The low energy; (b) the high energy part

    图 8  O+ + H2反应的速率常数和文献[5]的实验结果

    Fig. 8.  The rate constant of the O+ + H2 reaction and the experimental values obtained from Ref. [5] in the temperature range of 200 to 1000 K

    表 1  计算中使用的参数(除了特殊声明, 均采用原子单位a.u.)

    Table 1.  Parameters used in the calculation (The atomic unit is used in the calculation unless otherwise stated)

    格点范围和大小$R \in \left[ {0.1,16} \right],{N_R} = 279,N_R^{{\rm{int}}} = 159$
    $r \in \left[ {0.1,15} \right],{N_r} = 279,N_r^{{\rm{asy}}} = 159$
    初始波包Rc = 11.0, ${k_0} = \sqrt {2{E_0}{\mu_R}} $
    ${\varDelta _R} = 0.2 {\rm{exp}}\left[ { - \dfrac{{{{\left( {R - {R_{\rm{c}}}} \right)}^2}}}{{2\varDelta _R^2}}} \right]{\rm{cos}}\left( {{k_0}R} \right)$;

    其中E0 = 0.5 eV
    总传播时间 30000
    最大总角
    动量J
    70
    下载: 导出CSV
  • [1]

    Duley W W, Williams D A 1984 Interstellar Chemistry (New York: Academic Press) p251

    [2]

    Armentrout P 2000 Int. J. Mass Spectrom. Ion Process. 200 21933

    [3]

    Jambrina P G, Alvarino J M, Gerlich D, Hankel M, Herrero V J, Saez-Rabanos V, Aoiz F J 2012 Phys. Chem. Chem. Phys. 14 3346Google Scholar

    [4]

    Wang B B, Han Y C, Gao W, Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926Google Scholar

    [5]

    Fehsenfeld F C, Schmeltekopf A L, Ferguson E E 1967 J. Chem. Phys. 46 2802Google Scholar

    [6]

    Kim J K, Theard L P, Huntress W T 1975 J. Chem. Phys. 62 45Google Scholar

    [7]

    Federer W, Villinger H, Howorka F, Lindinger W, Tosi P, Bassi D, Ferguson E 1984 Phys. Rev. Lett. 52 2084Google Scholar

    [8]

    Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308Google Scholar

    [9]

    Burley J, Ervin K M, Armentrout P 1987 Int. J. Mass Spectrom. Ion Process 80 153Google Scholar

    [10]

    Sunderlin L, Armentrout P 1990 Chem. Phys. Lett. 167 188Google Scholar

    [11]

    Flesch G D, Ng C Y 1991 J. Chem. Phys. 94 2372Google Scholar

    [12]

    Li X, Huang Y L, Flesch G D, Ng C Y 1997 J. Chem. Phys. 106 564Google Scholar

    [13]

    Gillen K T, Mahan B H, Winn J S 1973 J. Chem. Phys. 58 5373Google Scholar

    [14]

    Gillen K T, Mahan B H, Winn J S 1973 J. Chem. Phys. 59 6380Google Scholar

    [15]

    Ng C Y 2002 J. Phys. Chem. A 106 5953Google Scholar

    [16]

    Martínez R, Millán J, González M 2004 J. Chem. Phys. 120 4705Google Scholar

    [17]

    Martínez R, Sierra J D, González M 2005 J. Chem. Phys. 123 174312Google Scholar

    [18]

    Martínez R, Lucas J M, Giménez X, Aguilar A, González M 2006 J. Chem. Phys. 124 144301Google Scholar

    [19]

    Martínez R, Sierra J D, Gray S K, González M 2006 J. Chem. Phys. 125 164305Google Scholar

    [20]

    Kłos J, Bulut N, Akpinar S 2012 Chem. Phys. Lett. 532 22Google Scholar

    [21]

    Xu W, Li W, Lv S, Zhai H, Duan Z, Zhang P 2012 J. Phys. Chem. A 116 10882Google Scholar

    [22]

    Gómez-Carrasco S, Godard B, Lique F, Bulut N, Kłos J, Roncero O, Aguado A, Aoiz F J, Castillo J F, Goicoechea J R 2014 Astrophys. J. 794 33Google Scholar

    [23]

    Bulut N, Castillo J F, Jambrina P G, Kłos J, Roncero O, Aoiz F J, Bañares L 2015 J. Phys. Chem. A 119 11951Google Scholar

    [24]

    Li W T, Yuan J C, Yuan M L, Zhang Y, Yao M H, Sun Z G 2018 Phys. Chem. Chem. Phys. 20 1039Google Scholar

    [25]

    段志欣, 邱明辉, 姚翠霞 2014 物理学报 63 063402Google Scholar

    Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402Google Scholar

    [26]

    李文涛, 于文涛, 姚明海 2018 物理学报 67 103401Google Scholar

    Li W T, Yu W T, Yao M H 2018 Acta Phys. Sin. 67 103401Google Scholar

    [27]

    张静, 魏巍, 高守宝, 孟庆田 2015 物理学报 64 063101Google Scholar

    Zhang J, Wei W, Gao S B, Meng Q T 2015 Acta Phys. Sin. 64 063101Google Scholar

    [28]

    Zhao B, Sun Z G, Guo H 2016 J. Chem. Phys. 144 214303Google Scholar

    [29]

    Zhao B, Sun Z G, Guo H 2016 J. Chem. Phys. 144 064104Google Scholar

    [30]

    Li W T, Chen M D, Sun Z G 2015 Chin. J. Chem. Phys. 28 415Google Scholar

    [31]

    Fleck J A, Morris J R, Feit M D 1976 Appl. Phys. 10 129

  • [1] 赵文丽, 宋玉志, 马超, 高峰, 孟庆田. 基于一个新SiH2(11A′)势能面的H+SiH反应动力学研究. 物理学报, 2024, 73(20): 203401. doi: 10.7498/aps.73.20240859
    [2] 赵文丽, 孙丰伟, 张红, 王永刚, 高峰, 孟庆田. $ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $反应量子波包动力学研究. 物理学报, 2022, 71(22): 228201. doi: 10.7498/aps.71.20221155
    [3] 李文涛, 袁美玲, 王杰敏. C++H2反应的动力学研究: 基于一个新构建的势能面. 物理学报, 2022, 71(9): 093402. doi: 10.7498/aps.71.20212241
    [4] 袁方园, 朱子亮. D + DBr反应的态-态动力学研究. 物理学报, 2020, 69(11): 113401. doi: 10.7498/aps.69.20200321
    [5] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应. 物理学报, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [6] 张静, 魏巍, 高守宝, 孟庆田. H+Li2: 一个典型的释能反应体系及其含时动力学研究. 物理学报, 2015, 64(6): 063101. doi: 10.7498/aps.64.063101
    [7] 刘丽娟, 颉录有, 陈展斌, 蒋军, 董晨钟. 镁原子碰撞激发微分截面和Stokes参数的理论研究. 物理学报, 2012, 61(10): 103102. doi: 10.7498/aps.61.103102
    [8] 沈光先, 汪荣凯, 令狐荣锋, 周勋, 杨向东. He-HD (HT, DT) 非对称碰撞体系振转势能面及微分散射截面的理论计算. 物理学报, 2012, 61(21): 213101. doi: 10.7498/aps.61.213101
    [9] 李勇军, 冯灏, 孙卫国, 曾阳阳, 王小炼, 李会东, 樊群超. 基于严格交换势的低能电子与H2分子碰撞振动激发散射截面的研究. 物理学报, 2011, 60(4): 043401. doi: 10.7498/aps.60.043401
    [10] 李劲, 令狐荣锋, 司冠杰, 杨向东. 低能He原子与Li2分子碰撞散射截面理论计算. 物理学报, 2010, 59(8): 5424-5428. doi: 10.7498/aps.59.5424
    [11] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [12] 余春日, 汪荣凯, 张杰, 杨向东. He同位素原子与HBr分子碰撞的微分截面. 物理学报, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [13] 汪荣凯, 沈光先, 杨向东. He-BH碰撞体系微分截面的理论计算. 物理学报, 2009, 58(8): 5335-5341. doi: 10.7498/aps.58.5335
    [14] 王 平, 李芳昱, 何晓宇. 电磁场中光子-轴子的转化微分截面. 物理学报, 2008, 57(9): 5442-5447. doi: 10.7498/aps.57.5442
    [15] 潘 宇, 王凯俊, 方祯云, 汪先友, 彭庆军. 精确计算n-n重正化链图传播下n+n→2π0反应截面. 物理学报, 2008, 57(8): 4817-4825. doi: 10.7498/aps.57.4817
    [16] 汪荣凯, 沈光先, 宋晓书, 令狐荣锋, 杨向东. He同位素对He-NO碰撞体系微分截面的影响. 物理学报, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
    [17] 施德恒, 孙金锋, 朱遵略, 杨向东, 刘玉芳, 马 恒. 中、高能电子被SO2分子散射的微分截面、动量转移截面及弹性积分截面. 物理学报, 2007, 56(8): 4435-4440. doi: 10.7498/aps.56.4435
    [18] 汪荣凯, 令狐荣锋, 杨向东. He-NO碰撞体系微分截面的理论计算. 物理学报, 2007, 56(4): 2067-2072. doi: 10.7498/aps.56.2067
    [19] 施德恒, 孙金锋, 朱遵略, 刘玉芳, 杨向东. 中高能电子被O2及CF4分子散射的微分截面、弹性积分截面及动量转移截面. 物理学报, 2005, 54(8): 3548-3553. doi: 10.7498/aps.54.3548
    [20] 白丽华, 张庆刚, 刘新国. D+CD4→CD3+D2反应的四维量子散射计算. 物理学报, 2003, 52(11): 2774-2780. doi: 10.7498/aps.52.2774
计量
  • 文章访问数:  6901
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-02-20
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回