-
铁基非晶合金具有低矫顽力、低损耗等优异性能,但受制于非晶形成能力和力学性能限制,难以制备复杂结构器件。3D打印理论上可以制备任意结构的器件。本文利用选择性激光熔化3D打印技术,通过打印参数优化,获得低能量输入熔池,并提高熔池轨道和成型层的搭接质量,成功克服制备过程中非晶相与成型质量相互制约的瓶颈,获得致密度为94.3%、矫顽力为0.5 Oe的铁基非晶合金,且相比粉末,所得铁基非晶合金的饱和磁化强度提升至0.89 T,并制备出复杂结构的铁基非晶器件。本文研究为3D打印高质量铁基非晶器件提供了新的思路,对推动铁基非晶合金的应用具有重要意义。Fe-based amorphous alloys offer exceptional properties such as low coercivity and core losses. In recent years, interest has focused on developing amorphous alloys using selective laser melting (SLM) technology. However, the glass-forming ability (GFA) and mechanical properties pose challenges for fabricating Fe-based amorphous alloys with complex geometries. This work aims to establish fundamental processing-(micro)structure-property links in Fe-based amorphous alloys processed by selective laser melting (SLM). With that purpose, a low-energy-input melt pool was achieved and the overlap quality between adjacent melt tracks and successive deposited layers is enhanced., through optimization of printing parameters. The Fe-based amorphous alloy was obtained with a high relative density of 94.3% and a low coercivity of 0.5 Oe. Furthermore, the saturation magnetization of the printed alloy increased to 0.89 T compared to the powder feedstock. This work overcomes the mutually restrictive relationship between the glass-forming ability (GFA) and part quality during fabricating the complex-structure Fe-based amorphous alloys, holding significant implications for advancing the application of Fe-based amorphous alloys.
-
[1] Wang Y, Lucia O, Zhang Z, Guan Y, Xu D 2020IET Power Electron. 13 1711
[2] Battal F, Balci S, Sefa I 2020Meas. J. Int. Meas. Confed. 171 108848
[3] Mahesh M, Kumar K V, Abebe M, Udayakumar L, Mathankumar M 2021Mater. Today Proc. 46 3888
[4] Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018Acta Phys. Sin. 67 016101(in Chinese) [姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽2018物理学报67 016101]
[5] Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019Prog. Mater. Sci. 103 235
[6] Inoue A, Shinohara Y, Gook J S 1995Mater. Trans., JIM. 36 1427
[7] Ponnambalam V, Poon S J, Shiflet G J 2004J. Mater. Res. 19 1320
[8] Amiya K, Inoue A 2006Mater. Trans. 47 1615
[9] Zhang Y N, Wang Y J, Kong L T, Li J F 2012Acta Phys. Sin. 61 454(in Chinese) [张雅楠, 王有骏, 孔令体, 李金富2012物理学报61 454]
[10] Suryanarayana C, Inoue A 2013Int. Mater. Rev. 58 131
[11] Sun J, Shen P F, Shang Q Z, Zhang P Y, Liu L, Li M R, Hong L, Li W H 2023Acta Phys. Sin. 72 206(in Chinese) [孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火2023物理学报72 206]
[12] Sohrabi S, Fu J, Li L, Zhang Y, Li X, Sun F, Ma J, Wang W H 2024Prog. Mater. Sci. 144 101283
[13] DebRoy T, Wei H L, Zuback J S, Mukherjee T, Elmer J W, Milewski J O, Beese A M, Wilson-Heid A D, De A, Zhang W 2018Prog. Mater. Sci. 92 112
[14] Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013Mater. Today 16 37
[15] Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O 2018Appl. Mater. Today 11 264
[16] Thorsson L, Unosson M, Pérez-Prado M T, Jin X, Tiberto P, Barrera G, Adam B, Neuber N, Ghavimi A, Frey M, Busch R 2022Mat. Design 215 110483
[17] Lu Y, Huang Y, Wu J, Lu X, Qin Z, Daisenberger D, Chiu Y L 2018Intermetallics 103 67
[18] Ouyang D, Xing W, Li N, Li Y C, Liu L 2018AM. 23 246
[19] Marattukalam J J, Pacheco V, Karlsson D, Riekehr L, Lindwall J, Forsberg F, Jansson U, Sahlberg M, Hjörvarsson B 2020AM. 33 101124
[20] Qiu C, Panwisawas C, Ward M, Basoalto H C, Brooks J W, Attallah M M 2015Acta Mater. 96 72
[21] Xing W, Ouyang D, Li N, Liu L 2018Intermetallics 103 101
[22] Ren Z, Zhang D Z, Fu G, Jiang J, Zhao M 2021Mat. Design 207 109857
[23] Ge Y, Qiao J, Chang Z, Hou M, Xu H, Yang A, Song Y, Bi W, Ma N 2024Mater. Today Commun. 39 108597
[24] Nguyen QB, Luu DN, Nai SM, Zhu Z, Chen Z, Wei J 2018Arch. Civ. Mech. Eng. 18 948
[25] Yang G, Lin X, Liu F, Hu Q, Ma L, Li J, Huang W 2012Intermetallics 22 110
[26] Nam Y G, Koo B, Chang M S, Yang S, Yu J, Park Y H, Jeong J W 2020Mater. Lett. 261 127068
[27] Shi Y, Wei D S 2023Chin. J. Lasers 50 131(in Chinese) [石岩, 魏登松2023中国激光50 131]
[28] Han Q, Gu H, Setchi R 2019Powder Technol. 352 91
[29] Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C 2020Mater. Charact. 162 110206
[30] Yadroitsev I, Yadroitsava I, Bertrand P, Smurov I 2012Rapid Prototyp. J. 18 201
[31] Yuan W, Chen H, Cheng T, Wei Q 2020Mat. Design 189 108542
[32] Zhang Y, Liu H, Mo J, Wang M, Chen Z, He Y, Yang W, Tang C 2019Phys. Chem. Chem. Phys. 21 12406
[33] Özden M G, Morley N A 2023J. Alloys Compd. 960 170644
[34] Sun H, Flores K M 2013Intermetallics 43 53
[35] Li S Y, Fu G, Li H L, Ren Z H, Li S B, Xiao H Q, Peng Q G 2023J. Alloys Compd. 967 171778
[36] Murayama S, Inaba H, Hoshi K, Obi Y 1993IEEE Trans. Magn. 29 2682
[37] Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W 2019J. Alloys Compd. 771 769
[38] Wu X P, Liu S F, Ma T D, Wang S M, Wang M Y 2024AM&D. 31 99(in Chinese) [邬小萍,刘淑凤,马通达,王书明,王梦圆2024金属功能材料31 99]
[39] Guo Z Z, Hu X B 2012Acta Phys. Sin. 62 5(in Chinese)[郭子政,胡旭波2012物理学报62 5]
[40] Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015Mat. Design 86 703
[41] Rodríguez-Sánchez M, Sadanand S, Ghavimi A, Busch R, Tiberto P, Ferrara E, Barrera G, Thorsson L, Wachter H J, Gallino I, Pérez-Prado M T 2024Mater. 35 102111
计量
- 文章访问数: 27
- PDF下载量: 0
- 被引次数: 0