搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光熔化3D打印高性能铁基非晶软磁器件及其物理机制

林可心 杨卫明 李文宇 马严 马丽 张响 刘海顺

引用本文:
Citation:

激光熔化3D打印高性能铁基非晶软磁器件及其物理机制

林可心, 杨卫明, 李文宇, 马严, 马丽, 张响, 刘海顺

Performance Control Mechanism of Fe-based Amorphous Devices by Selective Laser Melting 3D Printing

Lin Kexin, Yang Weiming, Li Wenyu, Ma Yan, Ma Li, Zhang Xiang, Liu Haishun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 铁基非晶合金具有低矫顽力、低损耗等优异性能,但受制于非晶形成能力和力学性能限制,难以制备复杂结构器件。3D打印理论上可以制备任意结构的器件。本文利用选择性激光熔化3D打印技术,通过打印参数优化,获得低能量输入熔池,并提高熔池轨道和成型层的搭接质量,成功克服制备过程中非晶相与成型质量相互制约的瓶颈,获得致密度为94.3%、矫顽力为0.5 Oe的铁基非晶合金,且相比粉末,所得铁基非晶合金的饱和磁化强度提升至0.89 T,并制备出复杂结构的铁基非晶器件。本文研究为3D打印高质量铁基非晶器件提供了新的思路,对推动铁基非晶合金的应用具有重要意义。
    Fe-based amorphous alloys offer exceptional properties such as low coercivity and core losses. In recent years, interest has focused on developing amorphous alloys using selective laser melting (SLM) technology. However, the glass-forming ability (GFA) and mechanical properties pose challenges for fabricating Fe-based amorphous alloys with complex geometries. This work aims to establish fundamental processing-(micro)structure-property links in Fe-based amorphous alloys processed by selective laser melting (SLM). With that purpose, a low-energy-input melt pool was achieved and the overlap quality between adjacent melt tracks and successive deposited layers is enhanced., through optimization of printing parameters. The Fe-based amorphous alloy was obtained with a high relative density of 94.3% and a low coercivity of 0.5 Oe. Furthermore, the saturation magnetization of the printed alloy increased to 0.89 T compared to the powder feedstock. This work overcomes the mutually restrictive relationship between the glass-forming ability (GFA) and part quality during fabricating the complex-structure Fe-based amorphous alloys, holding significant implications for advancing the application of Fe-based amorphous alloys.
  • [1]

    Wang Y, Lucia O, Zhang Z, Guan Y, Xu D 2020IET Power Electron. 13 1711

    [2]

    Battal F, Balci S, Sefa I 2020Meas. J. Int. Meas. Confed. 171 108848

    [3]

    Mahesh M, Kumar K V, Abebe M, Udayakumar L, Mathankumar M 2021Mater. Today Proc. 46 3888

    [4]

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018Acta Phys. Sin. 67 016101(in Chinese) [姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽2018物理学报67 016101]

    [5]

    Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019Prog. Mater. Sci. 103 235

    [6]

    Inoue A, Shinohara Y, Gook J S 1995Mater. Trans., JIM. 36 1427

    [7]

    Ponnambalam V, Poon S J, Shiflet G J 2004J. Mater. Res. 19 1320

    [8]

    Amiya K, Inoue A 2006Mater. Trans. 47 1615

    [9]

    Zhang Y N, Wang Y J, Kong L T, Li J F 2012Acta Phys. Sin. 61 454(in Chinese) [张雅楠, 王有骏, 孔令体, 李金富2012物理学报61 454]

    [10]

    Suryanarayana C, Inoue A 2013Int. Mater. Rev. 58 131

    [11]

    Sun J, Shen P F, Shang Q Z, Zhang P Y, Liu L, Li M R, Hong L, Li W H 2023Acta Phys. Sin. 72 206(in Chinese) [孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火2023物理学报72 206]

    [12]

    Sohrabi S, Fu J, Li L, Zhang Y, Li X, Sun F, Ma J, Wang W H 2024Prog. Mater. Sci. 144 101283

    [13]

    DebRoy T, Wei H L, Zuback J S, Mukherjee T, Elmer J W, Milewski J O, Beese A M, Wilson-Heid A D, De A, Zhang W 2018Prog. Mater. Sci. 92 112

    [14]

    Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013Mater. Today 16 37

    [15]

    Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O 2018Appl. Mater. Today 11 264

    [16]

    Thorsson L, Unosson M, Pérez-Prado M T, Jin X, Tiberto P, Barrera G, Adam B, Neuber N, Ghavimi A, Frey M, Busch R 2022Mat. Design 215 110483

    [17]

    Lu Y, Huang Y, Wu J, Lu X, Qin Z, Daisenberger D, Chiu Y L 2018Intermetallics 103 67

    [18]

    Ouyang D, Xing W, Li N, Li Y C, Liu L 2018AM. 23 246

    [19]

    Marattukalam J J, Pacheco V, Karlsson D, Riekehr L, Lindwall J, Forsberg F, Jansson U, Sahlberg M, Hjörvarsson B 2020AM. 33 101124

    [20]

    Qiu C, Panwisawas C, Ward M, Basoalto H C, Brooks J W, Attallah M M 2015Acta Mater. 96 72

    [21]

    Xing W, Ouyang D, Li N, Liu L 2018Intermetallics 103 101

    [22]

    Ren Z, Zhang D Z, Fu G, Jiang J, Zhao M 2021Mat. Design 207 109857

    [23]

    Ge Y, Qiao J, Chang Z, Hou M, Xu H, Yang A, Song Y, Bi W, Ma N 2024Mater. Today Commun. 39 108597

    [24]

    Nguyen QB, Luu DN, Nai SM, Zhu Z, Chen Z, Wei J 2018Arch. Civ. Mech. Eng. 18 948

    [25]

    Yang G, Lin X, Liu F, Hu Q, Ma L, Li J, Huang W 2012Intermetallics 22 110

    [26]

    Nam Y G, Koo B, Chang M S, Yang S, Yu J, Park Y H, Jeong J W 2020Mater. Lett. 261 127068

    [27]

    Shi Y, Wei D S 2023Chin. J. Lasers 50 131(in Chinese) [石岩, 魏登松2023中国激光50 131]

    [28]

    Han Q, Gu H, Setchi R 2019Powder Technol. 352 91

    [29]

    Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C 2020Mater. Charact. 162 110206

    [30]

    Yadroitsev I, Yadroitsava I, Bertrand P, Smurov I 2012Rapid Prototyp. J. 18 201

    [31]

    Yuan W, Chen H, Cheng T, Wei Q 2020Mat. Design 189 108542

    [32]

    Zhang Y, Liu H, Mo J, Wang M, Chen Z, He Y, Yang W, Tang C 2019Phys. Chem. Chem. Phys. 21 12406

    [33]

    Özden M G, Morley N A 2023J. Alloys Compd. 960 170644

    [34]

    Sun H, Flores K M 2013Intermetallics 43 53

    [35]

    Li S Y, Fu G, Li H L, Ren Z H, Li S B, Xiao H Q, Peng Q G 2023J. Alloys Compd. 967 171778

    [36]

    Murayama S, Inaba H, Hoshi K, Obi Y 1993IEEE Trans. Magn. 29 2682

    [37]

    Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W 2019J. Alloys Compd. 771 769

    [38]

    Wu X P, Liu S F, Ma T D, Wang S M, Wang M Y 2024AM&D. 31 99(in Chinese) [邬小萍,刘淑凤,马通达,王书明,王梦圆2024金属功能材料31 99]

    [39]

    Guo Z Z, Hu X B 2012Acta Phys. Sin. 62 5(in Chinese)[郭子政,胡旭波2012物理学报62 5]

    [40]

    Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015Mat. Design 86 703

    [41]

    Rodríguez-Sánchez M, Sadanand S, Ghavimi A, Busch R, Tiberto P, Ferrara E, Barrera G, Thorsson L, Wachter H J, Gallino I, Pérez-Prado M T 2024Mater. 35 102111

  • [1] 张响, 宋英杰, 刘海顺, 熊翔, 杨卫明, 韩陈康. Fe73.5Si13.5B9Cu1Nb3非晶合金的高温氧化和晶化机理. 物理学报, doi: 10.7498/aps.74.20250112
    [2] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金. 物理学报, doi: 10.7498/aps.73.20241132
    [3] 余秀冬, 刘海顺, 薛琳, 张响, 杨卫明. 铁基非晶条带催化降解性能的退火晶化调控机理. 物理学报, doi: 10.7498/aps.73.20240249
    [4] 孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火. B元素添加对FePBCCu合金非晶形成能力、磁性能和力学性能的影响. 物理学报, doi: 10.7498/aps.72.20221553
    [5] 张家滕, 徐吉元, 金佳莹, 孟睿阳, 董生智. 晶界添加PrCu合金对(Pr, Nd, Dy)32.2Co13Cu0.4FebalB0.98M1.05磁体磁性能与微观组织的影响. 物理学报, doi: 10.7498/aps.71.20220406
    [6] 马爽, 郝玮晔, 王旭东, 张伟, 姚曼. 类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析. 物理学报, doi: 10.7498/aps.71.20220873
    [7] 肖俊儒, 刘仲武, 楼华山, 詹慧雄. 利用Pr70Cu30晶界扩散改善烧结钕铁硼废料矫顽力的研究. 物理学报, doi: 10.7498/aps.67.20172551
    [8] 李蕊轩, 张勇. 熵在非晶材料合成中的作用. 物理学报, doi: 10.7498/aps.66.177101
    [9] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平. 块体非晶合金的韧塑化. 物理学报, doi: 10.7498/aps.66.176111
    [10] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, doi: 10.7498/aps.66.176104
    [11] 侯志鹏, 苏峰, 王文全. 三元Co79Zr18Cr3合金中高矫顽力. 物理学报, doi: 10.7498/aps.63.087501
    [12] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 物理学报, doi: 10.7498/aps.63.078101
    [13] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响. 物理学报, doi: 10.7498/aps.62.057501
    [14] 张雅楠, 王有骏, 孔令体, 李金富. Y对Fe-Si-B 合金非晶形成能力及软磁性能的影响. 物理学报, doi: 10.7498/aps.61.157502
    [15] 张 辉, 张国英, 杨 爽, 吴 迪, 戚克振. Zr基大块非晶中添加元素对非晶形成能力及耐蚀性的影响. 物理学报, doi: 10.7498/aps.57.7822
    [16] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 基于成分连续变化计算黏度的合金系临界冷速模型. 物理学报, doi: 10.7498/aps.56.1543
    [17] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 大块非晶临界冷却速率的非等温转变计算模型. 物理学报, doi: 10.7498/aps.55.1953
    [18] 邱学军, 张云鹏, 何正红, 白 浪, 刘国磊, 王 跃, 陈 鹏, 熊祖洪. 矫顽力可调的多孔硅基Fe膜. 物理学报, doi: 10.7498/aps.55.6101
    [19] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对矫顽力的影响. 物理学报, doi: 10.7498/aps.54.4389
    [20] 李印峰, 陈笃行, 沈保根, M.VAZQUEZ, A.HERNANDO. 非晶态铁基合金退火样品的偏移回线. 物理学报, doi: 10.7498/aps.50.953
计量
  • 文章访问数:  27
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-13

/

返回文章
返回