-
铁基非晶合金具有高的饱和磁感应强度及低的矫顽力和损耗,是高频变压器和扼流圈铁芯等器件的理想材料.然而,该类合金晶化温度低并容易氧化,其在高温环境中的应用受到限制.铜和铌的添加可抑制晶核长大、提高热稳定性,但对合金的高温抗氧化性能及结构演化的影响尚不明确.本文利用静态空气氧化实验研究了Fe73.5Si13.5B9Cu1Nb3非晶合金高温氧化后微纳尺度结构的演变及其对合金性能的影响.微纳结构演化揭示硅和铌在650 oC氧化过程中快速扩散至氧化区域并形成致密氧化层,进而阻碍氧元素向合金内部扩散;合金内部则形成以铁元素为主的α-Fe(Si)相,其晶粒尺寸随着氧化时间而缓慢长大.热动力学行为表明氧化过程中硅和铌的偏析能提高合金体系热力学稳定性,抑制晶化过程中形成多种金属间化合物.磁滞回线结果表明,经650 oC氧化后,合金的饱和磁感应强度保持不变;同时,氧化时间为5 min时,矫顽力约为0.3 Oe,氧化时间延长至0.5 h后,矫顽力逐渐增大至61 Oe.Fe-based amorphous alloys are widely used in electronic devices such as high-frequency transformers and choke cores due to their low coercivity, low loss, and high saturation magnetic induction intensity. However, these alloys have a relatively low crystallization temperature and are prone to oxidation, which limits their application in high-temperature environments. The addition of copper and niobium elements can suppress the growth of crystal nuclei and improve thermal stability. However, the impact on the alloy's high-temperature oxidation resistance and structural evolution remains unclear. This paper uses static air oxidation to investigate the microstructure evolution of Fe73.5Si13.5B9Cu1Nb3 amorphous alloy after high-temperature oxidation and its impact on magnetic properties. Besides, long-time oxidation, such as 500 oC for 3000 hours or longer, is generally hard to perform in the lab. Thus, the authors apply Van’t Hoff’s rule to evaluate the long-time, relatively low-temperature oxidation using rapid high-temperature oxidation. Based on Van’t Hoff’s rule, the oxidation at 650℃ for 5 minutes will show similar or more severe oxidation effects on the microstructure of Fe73.5Si13.5B9Cu1Nb3 alloy after oxidation at 500 oC for 2730 hours. The microstructure evolution reveals that silicon and niobium in this alloy will quickly diffuse toward the samples’ surface during oxidation at 650 oC, and these two elements will form a dense layer to impede oxygen diffusion. Meanwhile, an α-Fe(Si) phase mainly composed of iron will be generated in the alloy, with its grain size slowly increasing during the oxidation process. Thermodynamic analysis indicates that the segregation of silicon and niobium can preserve the thermodynamic stability of the alloy system during oxidation and suppress the formation of intermetallic compounds during crystallization. The magnetic hysteresis loop results show that the coercivity of Fe73.5Si13.5B9Cu1Nb3 alloy after oxidation at 650℃ for 5 minutes would stay at approximately 0.3 Oe, suggesting the Fe73.5Si13.5B9Cu1Nb3 alloy might be a candidate for operating at 500 oC for more than 2700 hours. After that, its coercivity gradually increases to 61 Oe as the oxidation time rises to 0.5 hours, while its saturation magnetic induction intensity remains unchanged (~140 emu/g).
-
Keywords:
- Fe-based amorphous alloys /
- High-temperature oxidation /
- Crystallization mechanism /
- Magnetic properties
-
[1] Lang R, Chen H, Zhang J, Li H, Guo D, Kou J, Zhao J, Fang Y, Wang X, Qi X, Wang Y, Ren Y, Wang H 2024 Adv. Sci. 111
[2] Panda A K, Mohanta O, Mitra A, Jiles D C, Lo C C H, Melikhov Y 2007 J. Magn. Magn. Mater. 316 e886
[3] Dong Z, Chen G J, Peng W F 2005 Met. Funct. Mater. 1235(in Chinese) [董哲, 陈国钧, 彭伟锋, 高温应用软磁材料2005金属功能材料1235]
[4] Xiong Z W, Yang J, Wang Y, Yang L, Guan X, Cao L H, Wang J, Gao Z P 2022 Acta Phys. Sin. 71157502(in Chinese) [熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏2022物理学报71157502]
[5] Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 36280
[6] Zhang R, Zhou C, Chen K, Cao K, Zhang Y, Tian F, Murtaza A, Yang S, Song X 2021 Scr. Mater. 203114043
[7] Santhosh Kumar R, Rashmi, Sundara Rajan J 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO) Kottayam, India, April 28-29, 2022 p1
[8] Knipling K E, Daniil M, Willard M A 2009 Appl. Phys. Lett. 952
[9] Luo Z, Fan X, Zhang Y, Yang Z, Wang J, Wu Z, Liu X, Li G, Li Y 2021 J. Alloy. Compd. 862158595
[10] Du T, Varaprasad B S D C S, Guo Z, Gellman A J, Zhu J G, Laughlin D E 2021 J Magn. Magn. Mater. 539168347
[11] Wu L, Li Y, He A, Zhu Z, Zhang H, Zhang W 2023 Intermetallics 163108040
[12] Yu R H, Basu S, Ren L, Zhang Y, Parvizi-Majidi A, Unruh K M, Xiao J Q 2000 IEEE Tran. Magn. 363388
[13] Corodeanu S, Hlenschi C, Chiriac H, Óvári T A, Lupu N 2023 IEEE International Magnetic Conference Sendai, Japan, May 15-19, 2023
[14] Zhou J, Li X, Hou X, Ke H, Fan X, Luan J, Peng H, Zeng Q, Lou H, Wang J, Liu C T, Shen B, Sun B, Wang W, Bai H 2023 Adv. Mater. 2304490
[15] Ma Y, Wang Q, Zhou X, Hao J, Gault B, Zhang Q, Dong C, Nieh T G 2021 Adv. Mater. 331
[16] Shi R, Wang Z, Han Y 2019 AIP Adv. 955222
[17] Fu P, Shi J, Shi R, Zhang Y, Qi J, Yang Y 2023 Mater. Today Commun. 36106685
[18] Wu Y, Dai Z, Liu R, Zhou H 2024 J. Alloy. Compd. 981173713
[19] Zhang Y, Zhu J, Li S, Wang J, Ren Z 2022 J. Mater. Sci. Technol. 10266
[20] Kowalczyk M, Ferenc J, Liang X B, Kulik T 2006 J. Magn. Magn. Mater. 304 e651
[21] Han L L, Maccari F, Soldatov I, Peter N J, Souza Filho I R, Schafer R, Gutfleisch O, Li Z M, Raabe D 2023 Nat. Commun. 148176
[22] Wang Y, Xu J, Liu Y, Liu Z 2022 Mater. Charact. 187111830
[23] Silveyra J M, Illeková E 2014 J. Alloy. Compd. 610180
[24] Shivaee H A, Golikand A N, Hosseini H R M, Asgari M 2010 J. Mater. Sci. 45
[25] García J A, Pierna A R, Elbaile L, Crespo R D, Vara G, Marzo F F, Tejedor M 2006 J. Non-Cryst. Solids 3525118
[26] Zhu Z H, Yin L, Hu Q, Song H 2014 Rare Metal Mat. Eng. 431037
[27] Blázquez J S, Conde C F, Conde A, Roth S, Güth A 2006 J. Magn. Magn. Mater. 304627
[28] May J E, Oliveira M F, Kuri S E 2003 Mater. Sci. Eng. A 361179
[29] Stuart F A F C, 1912 Huygens Institute-Royal Netherlands Academy of Arts and Sciences (KNAW) Amsterdam, Netherlands, March 30, 1912 p1159
[30] Yu X D, Liu H S, Xue L, Zhang X, Yang W M 2024 Acta Phys. Sin. 7398801(in Chinese) [余秀冬, 刘海顺, 薛琳, 张响, 杨卫明2024物理学报7398801]
[31] Liu H S, Du Y W, Miao X X, Han K, Shen X P, Bu W K 2008 Rare Metals 27545
[32] Wang Y F, Xu J, Liu Y J, Liu Z W 2022 Mater. Charact. 187111830
[33] Luo T, Liu H L, Huang C M, Yue G, Hou F T, Yang Y Z 2023 J Mater. Sci.- Mater. Electron. 342167
[34] Jonghee H, Seoyeon K, Sungwoo S, Jan S, Haein C Y 2020 Metals 101297
[35] Guo Q, Deng Z W, Zhu Q K, Chen F H, Hu Y, Zhang K W 2020 Foundry Technology 411005(in Chinese) [郭琦, 邓志旺, 朱乾科, 陈峰华, 胡勇, 张克维2020铸造技术411005]
[36] Zhang Z F, Qu R T, Liu Z Q 2016 Acta Metall. Sin. 521171(in Chinese) [张哲峰, 屈瑞涛, 刘增乾2016金属学报521171]
[37] Lu L, Du P, Jiang T, Zhou T, Wen Q, Wang Y, Zeng Y, Xiong X 2025 J. Eur Ceram. Soc. 45116885
[38] Sun Y, Li J, Xie L, He A, Dong Y, Liu Y, Wang C, Zhang K 2021 J. Non-Cryst. Solids 566120839
计量
- 文章访问数: 16
- PDF下载量: 2
- 被引次数: 0