搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe73.5Si13.5B9Cu1Nb3非晶合金的高温氧化和晶化机理

张响 宋英杰 刘海顺 熊翔 杨卫明 韩陈康

引用本文:
Citation:

Fe73.5Si13.5B9Cu1Nb3非晶合金的高温氧化和晶化机理

张响, 宋英杰, 刘海顺, 熊翔, 杨卫明, 韩陈康

High-temperature oxidation and crystallization mechanism of Fe73.5Si13.5B9Cu1Nb3 amorphous alloy

ZHANG Xiang, SONG Yingjie, LIU Haishun, XIONG Xiang, YANG Weiming, HAN Chenkang
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 铁基非晶合金具有高的饱和磁感应强度及低的矫顽力和损耗,是高频变压器和扼流圈铁芯等器件的理想材料.然而,该类合金晶化温度低并容易氧化,其在高温环境中的应用受到限制.铜和铌的添加可抑制晶核长大、提高热稳定性,但对合金的高温抗氧化性能及结构演化的影响尚不明确.本文利用静态空气氧化实验研究了Fe73.5Si13.5B9Cu1Nb3非晶合金高温氧化后微纳尺度结构的演变及其对合金性能的影响.微纳结构演化揭示硅和铌在650 oC氧化过程中快速扩散至氧化区域并形成致密氧化层,进而阻碍氧元素向合金内部扩散;合金内部则形成以铁元素为主的α-Fe(Si)相,其晶粒尺寸随着氧化时间而缓慢长大.热动力学行为表明氧化过程中硅和铌的偏析能提高合金体系热力学稳定性,抑制晶化过程中形成多种金属间化合物.磁滞回线结果表明,经650 oC氧化后,合金的饱和磁感应强度保持不变;同时,氧化时间为5 min时,矫顽力约为0.3 Oe,氧化时间延长至0.5 h后,矫顽力逐渐增大至61 Oe.
    Fe-based amorphous alloys are widely used in electronic devices such as high-frequency transformers and choke cores due to their low coercivity, low loss, and high saturation magnetic induction intensity. However, these alloys have a relatively low crystallization temperature and are prone to oxidation, which limits their application in high-temperature environments. The addition of copper and niobium elements can suppress the growth of crystal nuclei and improve thermal stability. However, the impact on the alloy's high-temperature oxidation resistance and structural evolution remains unclear. This paper uses static air oxidation to investigate the microstructure evolution of Fe73.5Si13.5B9Cu1Nb3 amorphous alloy after high-temperature oxidation and its impact on magnetic properties. Besides, long-time oxidation, such as 500 oC for 3000 hours or longer, is generally hard to perform in the lab. Thus, the authors apply Van’t Hoff’s rule to evaluate the long-time, relatively low-temperature oxidation using rapid high-temperature oxidation. Based on Van’t Hoff’s rule, the oxidation at 650℃ for 5 minutes will show similar or more severe oxidation effects on the microstructure of Fe73.5Si13.5B9Cu1Nb3 alloy after oxidation at 500 oC for 2730 hours. The microstructure evolution reveals that silicon and niobium in this alloy will quickly diffuse toward the samples’ surface during oxidation at 650 oC, and these two elements will form a dense layer to impede oxygen diffusion. Meanwhile, an α-Fe(Si) phase mainly composed of iron will be generated in the alloy, with its grain size slowly increasing during the oxidation process. Thermodynamic analysis indicates that the segregation of silicon and niobium can preserve the thermodynamic stability of the alloy system during oxidation and suppress the formation of intermetallic compounds during crystallization. The magnetic hysteresis loop results show that the coercivity of Fe73.5Si13.5B9Cu1Nb3 alloy after oxidation at 650℃ for 5 minutes would stay at approximately 0.3 Oe, suggesting the Fe73.5Si13.5B9Cu1Nb3 alloy might be a candidate for operating at 500 oC for more than 2700 hours. After that, its coercivity gradually increases to 61 Oe as the oxidation time rises to 0.5 hours, while its saturation magnetic induction intensity remains unchanged (~140 emu/g).
  • [1]

    Lang R, Chen H, Zhang J, Li H, Guo D, Kou J, Zhao J, Fang Y, Wang X, Qi X, Wang Y, Ren Y, Wang H 2024 Adv. Sci. 111

    [2]

    Panda A K, Mohanta O, Mitra A, Jiles D C, Lo C C H, Melikhov Y 2007 J. Magn. Magn. Mater. 316 e886

    [3]

    Dong Z, Chen G J, Peng W F 2005 Met. Funct. Mater. 1235(in Chinese) [董哲, 陈国钧, 彭伟锋, 高温应用软磁材料2005金属功能材料1235]

    [4]

    Xiong Z W, Yang J, Wang Y, Yang L, Guan X, Cao L H, Wang J, Gao Z P 2022 Acta Phys. Sin. 71157502(in Chinese) [熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏2022物理学报71157502]

    [5]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 36280

    [6]

    Zhang R, Zhou C, Chen K, Cao K, Zhang Y, Tian F, Murtaza A, Yang S, Song X 2021 Scr. Mater. 203114043

    [7]

    Santhosh Kumar R, Rashmi, Sundara Rajan J 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO) Kottayam, India, April 28-29, 2022 p1

    [8]

    Knipling K E, Daniil M, Willard M A 2009 Appl. Phys. Lett. 952

    [9]

    Luo Z, Fan X, Zhang Y, Yang Z, Wang J, Wu Z, Liu X, Li G, Li Y 2021 J. Alloy. Compd. 862158595

    [10]

    Du T, Varaprasad B S D C S, Guo Z, Gellman A J, Zhu J G, Laughlin D E 2021 J Magn. Magn. Mater. 539168347

    [11]

    Wu L, Li Y, He A, Zhu Z, Zhang H, Zhang W 2023 Intermetallics 163108040

    [12]

    Yu R H, Basu S, Ren L, Zhang Y, Parvizi-Majidi A, Unruh K M, Xiao J Q 2000 IEEE Tran. Magn. 363388

    [13]

    Corodeanu S, Hlenschi C, Chiriac H, Óvári T A, Lupu N 2023 IEEE International Magnetic Conference Sendai, Japan, May 15-19, 2023

    [14]

    Zhou J, Li X, Hou X, Ke H, Fan X, Luan J, Peng H, Zeng Q, Lou H, Wang J, Liu C T, Shen B, Sun B, Wang W, Bai H 2023 Adv. Mater. 2304490

    [15]

    Ma Y, Wang Q, Zhou X, Hao J, Gault B, Zhang Q, Dong C, Nieh T G 2021 Adv. Mater. 331

    [16]

    Shi R, Wang Z, Han Y 2019 AIP Adv. 955222

    [17]

    Fu P, Shi J, Shi R, Zhang Y, Qi J, Yang Y 2023 Mater. Today Commun. 36106685

    [18]

    Wu Y, Dai Z, Liu R, Zhou H 2024 J. Alloy. Compd. 981173713

    [19]

    Zhang Y, Zhu J, Li S, Wang J, Ren Z 2022 J. Mater. Sci. Technol. 10266

    [20]

    Kowalczyk M, Ferenc J, Liang X B, Kulik T 2006 J. Magn. Magn. Mater. 304 e651

    [21]

    Han L L, Maccari F, Soldatov I, Peter N J, Souza Filho I R, Schafer R, Gutfleisch O, Li Z M, Raabe D 2023 Nat. Commun. 148176

    [22]

    Wang Y, Xu J, Liu Y, Liu Z 2022 Mater. Charact. 187111830

    [23]

    Silveyra J M, Illeková E 2014 J. Alloy. Compd. 610180

    [24]

    Shivaee H A, Golikand A N, Hosseini H R M, Asgari M 2010 J. Mater. Sci. 45

    [25]

    García J A, Pierna A R, Elbaile L, Crespo R D, Vara G, Marzo F F, Tejedor M 2006 J. Non-Cryst. Solids 3525118

    [26]

    Zhu Z H, Yin L, Hu Q, Song H 2014 Rare Metal Mat. Eng. 431037

    [27]

    Blázquez J S, Conde C F, Conde A, Roth S, Güth A 2006 J. Magn. Magn. Mater. 304627

    [28]

    May J E, Oliveira M F, Kuri S E 2003 Mater. Sci. Eng. A 361179

    [29]

    Stuart F A F C, 1912 Huygens Institute-Royal Netherlands Academy of Arts and Sciences (KNAW) Amsterdam, Netherlands, March 30, 1912 p1159

    [30]

    Yu X D, Liu H S, Xue L, Zhang X, Yang W M 2024 Acta Phys. Sin. 7398801(in Chinese) [余秀冬, 刘海顺, 薛琳, 张响, 杨卫明2024物理学报7398801]

    [31]

    Liu H S, Du Y W, Miao X X, Han K, Shen X P, Bu W K 2008 Rare Metals 27545

    [32]

    Wang Y F, Xu J, Liu Y J, Liu Z W 2022 Mater. Charact. 187111830

    [33]

    Luo T, Liu H L, Huang C M, Yue G, Hou F T, Yang Y Z 2023 J Mater. Sci.- Mater. Electron. 342167

    [34]

    Jonghee H, Seoyeon K, Sungwoo S, Jan S, Haein C Y 2020 Metals 101297

    [35]

    Guo Q, Deng Z W, Zhu Q K, Chen F H, Hu Y, Zhang K W 2020 Foundry Technology 411005(in Chinese) [郭琦, 邓志旺, 朱乾科, 陈峰华, 胡勇, 张克维2020铸造技术411005]

    [36]

    Zhang Z F, Qu R T, Liu Z Q 2016 Acta Metall. Sin. 521171(in Chinese) [张哲峰, 屈瑞涛, 刘增乾2016金属学报521171]

    [37]

    Lu L, Du P, Jiang T, Zhou T, Wen Q, Wang Y, Zeng Y, Xiong X 2025 J. Eur Ceram. Soc. 45116885

    [38]

    Sun Y, Li J, Xie L, He A, Dong Y, Liu Y, Wang C, Zhang K 2021 J. Non-Cryst. Solids 566120839

  • [1] 余秀冬, 刘海顺, 薛琳, 张响, 杨卫明. 铁基非晶条带催化降解性能的退火晶化调控机理. 物理学报, doi: 10.7498/aps.73.20240249
    [2] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良. Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究. 物理学报, doi: 10.7498/aps.72.20222037
    [3] 马爽, 郝玮晔, 王旭东, 张伟, 姚曼. 类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析. 物理学报, doi: 10.7498/aps.71.20220873
    [4] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, doi: 10.7498/aps.71.20220446
    [5] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, doi: 10.7498/aps.65.096103
    [6] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, doi: 10.7498/aps.63.098102
    [7] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 物理学报, doi: 10.7498/aps.63.078101
    [8] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, doi: 10.7498/aps.61.057502
    [9] 刘贵立, 李勇. 钛铝合金高温氧化机理电子理论研究. 物理学报, doi: 10.7498/aps.61.177101
    [10] 刘贵立. Fe-Cr-Al合金高温氧化行为电子理论研究. 物理学报, doi: 10.7498/aps.59.494
    [11] 张国英, 李丹, 梁婷. 铌合金电子结构及其高温氧化行为. 物理学报, doi: 10.7498/aps.59.8031
    [12] 刘贵立, 杨杰. Nb-Ti-Al合金高温氧化机理电子理论研究. 物理学报, doi: 10.7498/aps.59.4939
    [13] 刘贵立. Nb-Al合金高温氧化机理. 物理学报, doi: 10.7498/aps.59.499
    [14] 刘涛, 李卫. 时效工艺对PtCo合金磁性能的影响. 物理学报, doi: 10.7498/aps.58.5773
    [15] 张国英, 张辉, 方戈亮, 罗志成. Fe-Cr-Al合金氧化膜形成机理电子理论研究. 物理学报, doi: 10.7498/aps.58.6441
    [16] 杨全民, 许启明, 方允樟, 莫婵娟. Fe基纳米晶合金的晶化机理研究. 物理学报, doi: 10.7498/aps.58.4072
    [17] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, doi: 10.7498/aps.57.3823
    [18] 杨 白, 沈保根, 赵同云, 孙继荣. 纳米晶复合Pr2Fe14B/α-Fe快淬薄带的织构与磁性. 物理学报, doi: 10.7498/aps.56.3527
    [19] 靳惠明, Felix Adriana, Aroyave Majorri. 离子注钇对镍900℃高温氧化行为及氧化膜性能的影响研究. 物理学报, doi: 10.7498/aps.55.6157
    [20] 朱明刚, 李卫, 董生智, 李岫梅. Ga替代对纳米晶Nd(Fe,Co)B黏结磁体磁性能的影响. 物理学报, doi: 10.7498/aps.50.1600
计量
  • 文章访问数:  16
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-24

/

返回文章
返回