搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竖直取向MoS2纳米片复合Ag基底的SERS效应及机制研究

戴硕 李振 张超 郁菁 赵晓菲 吴阳 满宝元

引用本文:
Citation:

竖直取向MoS2纳米片复合Ag基底的SERS效应及机制研究

戴硕, 李振, 张超, 郁菁, 赵晓菲, 吴阳, 满宝元

Study on the SERS Effect and Mechanism of Vertically Oriented MoS2 Nanosheet Composite with Ag Substrate

DAI Shuo, LI Zhen, ZHANG Chao, YU Jing, ZHAO Xiaofei, WU Yang, MAN Baoyuan
PDF
导出引用
  • 结合金属和二维纳米材料的优点,研究人员提出了多种二维材料/金属复合结构作为表面增强拉曼光谱(SERS)基底,然而,复合结构中的二维纳米材料通常对总增强的作用较小.本文提出了一种竖直排列的二硫化钼(MoS2)纳米片,并将其与银纳米颗粒(Ag NPs)复合,制备MoS2/Ag基底,用于SERS检测.竖直排列MoS2纳米片可有效提高对分子的吸附,增强光吸收,提升电磁和化学双机制增强.实验结果表明,MoS2/Ag基底表现出优异的SERS性能,其对R6G分子的检测极限达到了10-12 M,接近单分子检测水平,增强因子约为1.08×109.同时该基底表现出优异的信号重现性,最终实现了对水产品中抗菌剂残留的超灵敏检测.
    Surface enhanced Raman spectroscopy (SERS) can provide rich molecular structure information with ultra-sensitive, non-destructive, and rapid detection down to the single-molecule level. It has been widely applied in physics, chemistry, biomedicine, environmental science, material science and other fields. Combining the advantages of metals and 2D nanomaterials, various 2D/metal composite structures have been proposed for SERS. However, the contribution of 2D nanomaterials in Raman enhancement is often limited. In this work, vertically aligned MoS2 nanosheet composite with silver nanoparticles (Ag NPs) was proposed for SERS detection. Large-area vertically aligned MoS2 nanosheets, which were grown directly on molybdenum (Mo) foil using hydrothermal method, can effectively enhance molecular adsorption, light absorption, and provide dual electromagnetic and chemical enhancement. Furthermore, annealing treatment of the MoS2 nanosheets significantly improves the efficiency of charge transfer between Ag NPs and MoS2, thereby increasing the chemical contribution to SERS. The results demonstrate that the annealed MoS2/Ag substrate exhibits outstanding SERS performance, with a detection limit for R6G molecules as low as 10-12 M, which is four orders of magnitude lower than that of the unannealed substrate. The enhancement factor (EF) is calculated to be approximately 1.08×109, approaching the sensitivity required for single-molecule detection. Additionally, the substrate performs high signal reproducibility at low concentrations, enabling ultra-sensitive detection of pesticide residues in aquatic products.
  • [1]

    Brosseau C L, Colina A, Perales-Rondon J V, Wilson A J, Joshi P B, Ren B, Wang X 2023 Nat. Rev. Methods Primers 3 79

    [2]

    Hu H F, Tian Y, Chen P P, Chu W G 2024 Adv. Mater. 36

    [3]

    Peng Y S, Lin C L, Li Y Y, Gao Y, Wang J, He J, Huang Z R, Liu J J, Luo X Y, Yang Y 2022 Matter 5 694

    [4]

    Logan N, Cao C, Freitag S, Haughey S A, Krska R, Elliott C T 2024 Adv. Mater 36

    [5]

    Itoh T, Prochazka M, Dong Z C, Ji W, Yamamoto Y S, Zhang Y, Ozaki Y 2023 Chem. Rev. 123 1552

    [6]

    Li L H, Jiang R T, Shan B B, Lu Y X, Zheng C, Li M 2022 Nat. Commun. 13 5249

    [7]

    Jensen L, Aikens C M, Schatz G C 2008 Chem. Soc. Rev. 37 1061

    [8]

    Feng E D, Zheng T T, He X X, Chen J Q, Gu Q Y, He X, Hu F H, Li J H, Tian Y 2023 Angew. Chem. Int. Ed. 62

    [9]

    Tang X, Fan X C, Zhou J, Wang S, Li M Z, Hou X Y, Jiang K W, Ni Z H, Zhao B, Hao Q, Qiu T 2023 Nano Lett. 23 7037

    [10]

    Yang L, Kim T H, Cho H Y, Luo J, Lee J M, Chueng S T D, Hou Y N, Yin P T T, Han J Y, Kim J H, Chung B G, Choi J W, Lee K B 2021 Adv. Funct. Mater. 31 2006918

    [11]

    Jiang Y, Wang X C, Zhao G, Shi Y Y, Wu Y, Yang H L, Zhao F Y 2024 Water Res. 255 121444

    [12]

    Hao N J, Liu P Z, Bachman H, Pei Z C, Zhang P R, Rufo J, Wang Z Y, Zhao S G, Huang T J 2020 Acs Nano 14 6150

    [13]

    Butmee P, Samphao A, Tumcharern G 2022 J. Hazard. Mater. 437 129344

    [14]

    Zhou L, Zhou J, Lai W, Yang X D, Meng J, Su L B, Gu C J, Jiang T, Pun E Y B, Shao L Y, Petti L, Sun X W, Jia Z H, Li Q X, Han J G, Mormile P 2020 Nat. Commun.11 1785

    [15]

    Pan H M, Dong Y, Gong L B, Zhai J Y, Song C Y, Ge Z L, Su Y, Zhu D, Chao J, Su S, Wang L H, Wan Y, Fan C H 2022 Biosens. Bioelectron. 215 114553

    [16]

    Zhou P Y, Cheng S Y, Li Q, Pang Y F, Xiao R 2023 Chem. Eng. J. 471 144514

    [17]

    Jalali M, Mata C D, Montermini L, Jeanne O, Hosseini, II, Gu Z L, Spinelli C, Lu Y, Tawil N, Guiot M C, He Z, Wachsmann-Hogiu S, Zhou R H, Petrecca K, Reisner W W, Rak J, Mahshid S 2023 Acs Nano 17 12052

    [18]

    Wang X Y, Zhang Y Q, Yu J H, Xie X, Deng R P, Min C J, Yuan X C 2022 Acs Nano16 18621

    [19]

    Choi J H, Kim T H, El-said W A, Lee J H, Yang L T, Conley B, Choi J W, Lee K B 2020 Nano Lett. 20 7670

    [20]

    Lin C L, Liang S S, Peng Y S, Long L, Li Y Y, Huang Z R, Long N V, Luo X Y, Liu J J, Li Z Y, Yang Y 2022 Nanomicro Lett. 14 75

    [21]

    Son W K, Choi Y S, Han Y W, Shin D W, Min K Y H, Shin J, Lee M J, Son H, Jeong D H, Kwak S Y 2023 Nat. Nanotechnol. 18 205

    [22]

    Ge Y C, Yang Y, Zhu Y J, Yuan M L, Sun L B, Jiang D F, Liu X H, Zhang Q W, Zhang J Y, Wang Y 2024 Small 20

    [23]

    Yuan H, Yu S, Kim M, Lee J E, Kang H, Jang D, Ramasamy M S, Kim D H 2022 Sens. Actuators B Chem. 371 132453

    [24]

    Yu L L, Lu L, Zeng L H, Yan X H, Ren X F, Wu J 2021 J. Phys. Chem. C 125 1940

    [25]

    Zhai Y J, Yang H, Zhang S N, Li J H, Shi K X, Jin F J 2021 J. Mater. Chem. C 9 6823

    [26]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. funct. mater. 22 1385

    [27]

    Niu Y, Gonzalez-Abad S, Frisenda R, Marauhn P, Drüppel M, Gant P, Schmidt R, Taghavi N S, Barcons D, Molina-Mendoza A J, de Vasconcellos S M, Bratschitsch R, De Lara D P, Rohlfing M, Castellanos-Gomez A 2018 Nanomaterials 8 725

    [28]

    Liu H Q, Yao C B, Li J, Sun W J, Jiang C H 2022 Appl. Surf. Sci 571 151176

    [29]

    Yu D H, Yu X D, Wang C H, Liu X C, Xing Y 2012 ACS Appl. Mater. Interfaces 4 2781

    [30]

    Wang P, Liang O, Zhang W, Schroeder T, Xie Y H 2013 Adv. Mater. 25 4918

    [31]

    Jones L A H, Xing Z D, Swallow J E N, Shiel H, Featherstone T J, Smiles M J, Fleck N, Thakur P K, Lee T L, Hardwick L J, Scanlon D O, Regoutz A, Veal T D, Dhanak V R 2022 J. Phys. Chem. C 126 21022

    [32]

    Choi S, Shaolin Z, Yang W 2014 J. Korean Phys. Soc. 64 1550

    [33]

    Dieringer J A, Wustholz K L, Masiello D J, Camden J P, Kleinman S L, Schatz G C, Van Duyne R P 2009 J. Am. Chem. Soc. 131 849

    [34]

    Kaushik A, Singh J, Soni R, Singh J P 2023 ACS Appl. Nano Mater. 6 9236

    [35]

    Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803

    [36]

    Chenal C, Birke R L, Lombardi J R 2008 ChemPhysChem 9 1617

    [37]

    Lombardi J R, Birke R L 2008 J. Phys. Chem. C 112 5605

  • [1] 田馨, 舒鹏丽, 张珂童, 曾德超, 姚志飞, 赵波慧, 任晓森, 秦丽, 朱强, 魏久焱, 温焕飞, 李艳君, 菅原康弘, 唐军, 马宗敏, 刘俊. Au/CeO2(111)表面吸附的电荷转移特性研究. 物理学报, doi: 10.7498/aps.74.20241522
    [2] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, doi: 10.7498/aps.69.20191636
    [3] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, doi: 10.7498/aps.68.20190276
    [4] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, doi: 10.7498/aps.67.20180650
    [5] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, doi: 10.7498/aps.67.20180759
    [6] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 物理学报, doi: 10.7498/aps.67.20172220
    [7] 江智宇, 王子仪, 王金金, 张荣君, 郑玉祥, 陈良尧, 王松有. 银纳米颗粒及阵列光传输性质的理论研究. 物理学报, doi: 10.7498/aps.65.207802
    [8] 陈鑫, 颜晓红, 肖杨. Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较. 物理学报, doi: 10.7498/aps.64.087102
    [9] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, doi: 10.7498/aps.64.137102
    [10] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, doi: 10.7498/aps.64.137104
    [11] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, doi: 10.7498/aps.64.147303
    [12] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长. 物理学报, doi: 10.7498/aps.61.037805
    [13] 韩涛, 孟凡英, 张松, 汪建强, 程雪梅. 银纳米颗粒减反射特性的理论研究. 物理学报, doi: 10.7498/aps.60.027303
    [14] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究. 物理学报, doi: 10.7498/aps.56.2986
    [15] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, doi: 10.7498/aps.55.723
    [16] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性. 物理学报, doi: 10.7498/aps.54.2859
    [17] 吴青松, 赵 岩, 张彩碚, 李 峰. 片状三角形银纳米颗粒的自组织行为与光学特性. 物理学报, doi: 10.7498/aps.54.1452
    [18] 谢 耩, 温建忠, 汪国平, 王建波. 聚合物表面银纳米颗粒的大面积均匀沉积及其应用. 物理学报, doi: 10.7498/aps.54.242
    [19] 曹柱荣, 蔡晓红, 于得洋, 杨 威, 卢荣春, 邵曹杰, 陈熙萌. 高电荷态Xe离子与He原子碰撞中的电子转移过程研究. 物理学报, doi: 10.7498/aps.53.2943
    [20] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理. 物理学报, doi: 10.7498/aps.49.1561
计量
  • 文章访问数:  52
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-14

/

返回文章
返回