搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光激发作用下分子与多金属纳米粒子间的电荷转移研究

高静 常凯楠 王鹿霞

引用本文:
Citation:

光激发作用下分子与多金属纳米粒子间的电荷转移研究

高静, 常凯楠, 王鹿霞

Theoretical study of photoinduced charge transfer in molecule and multi-metalnanoparticles system

Gao Jing, Chang Kai-Nan, Wang Lu-Xia
PDF
导出引用
  • 金属纳米粒子在光激发作用下的增强作用是纳米科学领域的一个研究热点. 针对分子和多个不同位形下的金属纳米粒子在光激发下的相互作用展开了理论研究. 应用密度矩阵理论描述分子和金属纳米粒子同时激发产生表面等离激元后的电荷输运过程. 研究发现, 表面等离激元增强效应与分子和各个金属纳米粒子的相对位置有密切关系. 详细分析了金属纳米粒子间的耦合强度、分子和金属纳米粒子间的耦合强度、表面等离激元能级杂化、分子激发能和外场频率对表面等离激元增强效应的影响.
    Photoinduced enhancement effect of the metal nanoparticle is one of the hot topics in the field of nanomaterial. Interaction between one molecule and a number of metal nanoparticles in different configurations in an applied external field is theoretically investigated in the scheme of density matrix theory, where the molecule and metal nanoparticles are excited simultaneously, and the subsequent charge transfer dynamics is simulated. Besides, the Coulomb interactions between the molecule and metal nanoparticles are calculated in the framework of dipole-dipole approximation. Parameters for metal nanoparticles with a 10 nm radius are used in the text and the polarization of the molecule has the same direction as that of external laser field. It is found that plasmon enhancement is closely related to the relative positions between the molecule and metal nanoparticles. Effects of enhancement due to the surface plasmon is discussed in detail for different configurations of the molecule and metal nanoparticles, and the surface plasmon hybridization, as well as the molecular excitation energy and the frequency of external field applied. Plasmon hybridization levels are formed when metal nanoparticles have strong enough interactions between themselves. The blue shift of the resonant frequency can be found for shorter distance of different metal nanoparticles. In the case that the centers of mass of metal nanoparticles and the molecule are on the same plane, it is found that the population in excited state of the molecule at a resonance frequency increases for a shorter distance between metal nanoparticles and the molecule. On the contrary, in the case that the centers of mass of four metal nanoparticles are located in a plane which is parallel to the x-y plane and above it by 10 nm, the population in the excited state of the molecule on resonant frequency will decrease at a shorter distance between the four metal nanoparticles.
    • 基金项目: 国家自然科学基金(批准号: 11174029)和中央高校基本科研业务费(批准号: FRF-SD-12-018A)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174029), and the Fundamental Research Fund for Central University of China (Grant No. FRF-SD-12-018A).
    [1]

    Lance K K, Eduardo C, Zhao L L, George C 2003 Phys. Rev. B 107 668

    [2]

    Reed M A, Frensley W R, Matyi R J, Randall J N, Seabaugh A C 1989 Appl. Phys. Lett. 54 1034

    [3]

    Cavicchi R, Silsbee R 1984 Phys. Rev. Lett. 52 1453

    [4]

    Cao R X, Zhang X P, Miao B F, Sun L, Wu D, You B, Ding H F 2014 Chin. Phys. B 23 38102

    [5]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 物理学报 62 024203]

    [6]

    Ruppin R 1982 J. Chem. Phys. 76 1681

    [7]

    Chew H 1987 J. Chem. Phys. 87 1355

    [8]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002

    [9]

    Kelley A M 2008 J. Chem. Phys. 128 224702

    [10]

    Marocico C, Knoester J 2009 Phys. Rev. A 79 053816

    [11]

    Xie H, Chung H, Leung P, Tsai D 2009 Phys. Rev. B 80 155448

    [12]

    Kyas G, May V 2011 J. Chem. Phys. 134 034701

    [13]

    Reil F, Hohenester U, Krenn J R, Leitner A 2008 Nano Lett. 8 4128

    [14]

    Zhang J, Fu Y, Chowdhury M H, Lakowicz J R 2007 J. Phys. Chem. C 111 11784

    [15]

    Zhang J, Fu Y, Lakowicz J R 2006 J. Phys. Chem. C 111 50

    [16]

    Sun X F, Wang L X 2014 Acta Phys. Sin. 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 物理学报 63 097301]

    [17]

    Encina E R, Coronado E A 2010 J. Phys. Chem. C 114 3918

    [18]

    Atay T, Song J H, Nurmikko A V 2004 Nano Lett. 4 1627

    [19]

    Olk P, Renger J, Wenzel M T, Eng L M 2008 Nano Lett. 8 1174

    [20]

    Lin H Y, Huang C H, Chang C H, Lan Y C, Chui H C 2010 Opt. Express 18 165

    [21]

    Citrin D S 2005 Nano Lett. 5 985

    [22]

    Rüting F 2011 Phys. Rev. B 83 115447

    [23]

    Rasskazov I L, Karpov S V, Markel V A 2014 Phys. Rev. B 90 075405

    [24]

    Lindberg J, Lindfors K, Setalä T, Kaivola M 2007 J. Opt. Soc. Am. A 24 3427

    [25]

    Zelinskyy Y, May V 2011 Nano Lett. 12 446

    [26]

    May V, Schreiber M 1992 Phys. Rev. A 45 2868

    [27]

    Nordlander P, Prodan E 2004 Nano Lett. 4 2209

    [28]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周俊, 金理, 张昊鹏 2012 物理学报 61 097805]

  • [1]

    Lance K K, Eduardo C, Zhao L L, George C 2003 Phys. Rev. B 107 668

    [2]

    Reed M A, Frensley W R, Matyi R J, Randall J N, Seabaugh A C 1989 Appl. Phys. Lett. 54 1034

    [3]

    Cavicchi R, Silsbee R 1984 Phys. Rev. Lett. 52 1453

    [4]

    Cao R X, Zhang X P, Miao B F, Sun L, Wu D, You B, Ding H F 2014 Chin. Phys. B 23 38102

    [5]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 物理学报 62 024203]

    [6]

    Ruppin R 1982 J. Chem. Phys. 76 1681

    [7]

    Chew H 1987 J. Chem. Phys. 87 1355

    [8]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002

    [9]

    Kelley A M 2008 J. Chem. Phys. 128 224702

    [10]

    Marocico C, Knoester J 2009 Phys. Rev. A 79 053816

    [11]

    Xie H, Chung H, Leung P, Tsai D 2009 Phys. Rev. B 80 155448

    [12]

    Kyas G, May V 2011 J. Chem. Phys. 134 034701

    [13]

    Reil F, Hohenester U, Krenn J R, Leitner A 2008 Nano Lett. 8 4128

    [14]

    Zhang J, Fu Y, Chowdhury M H, Lakowicz J R 2007 J. Phys. Chem. C 111 11784

    [15]

    Zhang J, Fu Y, Lakowicz J R 2006 J. Phys. Chem. C 111 50

    [16]

    Sun X F, Wang L X 2014 Acta Phys. Sin. 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 物理学报 63 097301]

    [17]

    Encina E R, Coronado E A 2010 J. Phys. Chem. C 114 3918

    [18]

    Atay T, Song J H, Nurmikko A V 2004 Nano Lett. 4 1627

    [19]

    Olk P, Renger J, Wenzel M T, Eng L M 2008 Nano Lett. 8 1174

    [20]

    Lin H Y, Huang C H, Chang C H, Lan Y C, Chui H C 2010 Opt. Express 18 165

    [21]

    Citrin D S 2005 Nano Lett. 5 985

    [22]

    Rüting F 2011 Phys. Rev. B 83 115447

    [23]

    Rasskazov I L, Karpov S V, Markel V A 2014 Phys. Rev. B 90 075405

    [24]

    Lindberg J, Lindfors K, Setalä T, Kaivola M 2007 J. Opt. Soc. Am. A 24 3427

    [25]

    Zelinskyy Y, May V 2011 Nano Lett. 12 446

    [26]

    May V, Schreiber M 1992 Phys. Rev. A 45 2868

    [27]

    Nordlander P, Prodan E 2004 Nano Lett. 4 2209

    [28]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周俊, 金理, 张昊鹏 2012 物理学报 61 097805]

  • [1] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [2] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 物理学报, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [3] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [4] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [5] 陈鑫, 颜晓红, 肖杨. Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较. 物理学报, 2015, 64(8): 087102. doi: 10.7498/aps.64.087102
    [6] 王鹿霞, 常凯楠. 异质结电荷转移的密度矩阵理论近似研究. 物理学报, 2014, 63(13): 137302. doi: 10.7498/aps.63.137302
    [7] 孙雪菲, 王鹿霞. 分子激发中的表面等离激元增强效应. 物理学报, 2014, 63(9): 097301. doi: 10.7498/aps.63.097301
    [8] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [9] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [10] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [11] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [12] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [13] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [14] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究. 物理学报, 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [15] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [16] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性. 物理学报, 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [17] 曹柱荣, 蔡晓红, 于得洋, 杨 威, 卢荣春, 邵曹杰, 陈熙萌. 高电荷态Xe离子与He原子碰撞中的电子转移过程研究. 物理学报, 2004, 53(9): 2943-2946. doi: 10.7498/aps.53.2943
    [18] 黎光武, 马洪良, 李茂生, 陈志骏, 陈淼华, 陆福全, 彭先觉, 杨福家. LaⅡ5d2 1G4→4f5d 1F3超精 细结构光谱测量. 物理学报, 2000, 49(7): 1256-1259. doi: 10.7498/aps.49.1256
    [19] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理. 物理学报, 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
    [20] 解士杰, 韩吉胜, 姚涛. 掺杂聚乙炔中的电荷转移与孤子、极化子等非线性元激发. 物理学报, 1995, 44(10): 1622-1627. doi: 10.7498/aps.44.1622
计量
  • 文章访问数:  2675
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-05
  • 修回日期:  2015-03-18
  • 刊出日期:  2015-07-05

光激发作用下分子与多金属纳米粒子间的电荷转移研究

  • 1. 北京科技大学数理学院物理系, 北京 100083
    基金项目: 国家自然科学基金(批准号: 11174029)和中央高校基本科研业务费(批准号: FRF-SD-12-018A)资助的课题.

摘要: 金属纳米粒子在光激发作用下的增强作用是纳米科学领域的一个研究热点. 针对分子和多个不同位形下的金属纳米粒子在光激发下的相互作用展开了理论研究. 应用密度矩阵理论描述分子和金属纳米粒子同时激发产生表面等离激元后的电荷输运过程. 研究发现, 表面等离激元增强效应与分子和各个金属纳米粒子的相对位置有密切关系. 详细分析了金属纳米粒子间的耦合强度、分子和金属纳米粒子间的耦合强度、表面等离激元能级杂化、分子激发能和外场频率对表面等离激元增强效应的影响.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回