搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算

王逸飞 李晓薇

引用本文:
Citation:

石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算

王逸飞, 李晓薇

First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets

Wang Yi-Fei, Li Xiao-Wei
PDF
导出引用
  • 光催化材料在解决能源短缺和环境污染等问题方面具有广泛的应用前景,本文通过构建BiOI纳米薄膜并将其与石墨烯复合起来,得到具有较高的比表面积和良好的光催化活性的纳米复合物光催化材料.采用基于密度泛函理论的第一性原理方法分别计算了单层和双层BiOI纳米片及其与石墨烯复合结构的电子结构和光学性质,并考虑了BiOI中的Bi,O,I三种空位缺陷对电子结构和光学特性的影响.计算结果表明,由于BiOI和石墨烯之间的相互作用,在石墨烯和BiOI界面处自发发生电荷转移,形成电子-空穴对,且石墨烯衬底可有效提高BiOI对可见光的光吸收,提高其光催化活性.对空位缺陷的计算表明,Bi空位缺陷可促进石墨烯和BiOI之间的电荷转移,形成更多的层间电子-空穴对;相反,O和I空位缺陷则抑制层间电荷转移,减少电子-空穴对的生成.
    Photocatalytic technology has wide potential applications in the fields of energy generation and pollutant purification due to its advantages of low cost and environmental friendliness. Besides traditional photocatalysts of TiO2 and ZnO, the developing of new photocatalyst with novel properties of strong oxidation, reduction ability, and visible light response has received more attention. Bismuth compounds, such as BiOX (X=Cl, Br, I), exhibit highly efficient photocatalytic activity because of its layered structure and electronic characteristics. The special layered structure, resulting in built-in-field, is favorable for the separation and migration of photogenerated electrons and holes. Among BiOX compounds, BiOI has the best optical absorption characteristics in the range of visible light, and also has the best photocatalytic activity for the degradation of organic pollutants under visible light irradiation. Graphene is an ideal two-dimensional crystal with zero band gap and a high specific surface area. Many researches have shown that graphene can effectively reduce recombination probability of hole and electron because of its unique electron transport property, and it can improve the photocatalytic activity and light stability of the composite catalytic materials. In this paper, by constructing BiOI nanosheets and hybrid graphene/BiOI, the nanocomposite photocatalytic materials each with a high specific surface area and good photocatalytic activity are obtained. First-principle calculation based on density functional theory is used to investigate the electronic and optical properties of single/double layer BiOI nanosheets and their nanocomposites with graphene. Three kinds of vacancy defects, such as Bi, O and I in BiOI, are also considered. The calculated results show that the spontaneous charge transfer from graphene to BiOI takes place, forming electron-hole puddle because of the interface interaction between graphene and BiOI. Additionally, the hybrid graphene/BiOI complex displays an enhanced optical absorption behavior in the visible light region, improving its photocatalytic activity. The calculated results about the vacancy defects show that the Bi vacancy enhances the charge transfer between BiOI and graphene and forms more electron-hole puddles. In contrast, O and I defects restrain the charge separation between two layers and reduce the formation of electron-hole puddles.
      通信作者: 李晓薇, lixiaowei@cugb.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11404294)、中央高校基本科研业务费(批准号:2652017333)和中国地质大学(北京)大学生创新性实验计划(批准号:2016AB024)资助的课题.
      Corresponding author: Li Xiao-Wei, lixiaowei@cugb.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404294), the Fundamental Research Fund for the Central Universities, China (Grand No. 2652017333), and the Students Innovative Experimental Project of China University of Geosciences (Beijing) (Grant No. 2016AB024).
    [1]

    Rauf M A, Ashraf S S 2009 Chem. Eng. J. 151 10

    [2]

    Akpan U G, Hameed B H 2009 J. Hazard. Mater. 170 520

    [3]

    Chen Y, Wang J Y, Li W Z, Ju M T 2016 J. Mater. Eng. 44 103(in Chinese) [陈昱, 王京钰, 李维尊, 鞠美庭 2016 材料工程 44 103]

    [4]

    Wang Z Y, Huang B B, Dai Y 2017 Mater. China 36 7(in Chinese) [王泽岩, 黄柏标, 戴瑛 2017 中国材料进展 36 7]

    [5]

    Jin T, Dai Y 2017 Acta Phys. Chem. Sin. 33 295(in Chinese) [荆涛, 戴瑛 2017 物理化学学报 33 295]

    [6]

    Huang H W, Han X, Li X W, Wang S H, Chu P K, Zhang Y H 2015 Acs Appl. Mater. Interfaces 7 482

    [7]

    Jiang J, Zhang X, Sun P B, Zhang L Z 2011 J. Phys. Chem. C 115 20555

    [8]

    Huang H W, He Y, Lin Z S, Kang L, Zhang Y H 2013 J. Phys. Chem. C 117 22986

    [9]

    Wei Y P, Yang Q L, Guo L 2009 Prog. Chem. 21 1734(in Chinese) [魏平玉, 杨青林, 郭林 2009 化学进展 21 1734]

    [10]

    Wang J J, Zhang M, Meng J, Li Q X, Yang J L 2017 RSC Adv. 7 24446

    [11]

    Zhao Z Y, Dai W W 2015 Inorg. Chem. 54 10732

    [12]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat Nanotechnol. 3 206

    [13]

    Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Yun H N, Zhu Z H, Amal R, Smith S C 2012 J. Am. Chem. Soc. 134 4393

    [14]

    Gao H T, Li X H, L J, Liu G J 2013 J. Phys. Chem. C 117 16022

    [15]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 169

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Monkhorst H J, Pack D 1976 Phys. Rev. B 13 5188

    [19]

    Grimme S 2006 J. Comp. Chem. 27 1787

    [20]

    Zhang H, Liu L, Zhou Z 2012 RSC Adv. 2 9224

    [21]

    Garg R, Dutta N K, Choudhury N R 2014 Nanomate- rials 4 267

    [22]

    Gajdos M, Hummer K, Kresse G, Furthmller J, Bechstedt F 2006 Phys. Rev. B 73 045112

  • [1]

    Rauf M A, Ashraf S S 2009 Chem. Eng. J. 151 10

    [2]

    Akpan U G, Hameed B H 2009 J. Hazard. Mater. 170 520

    [3]

    Chen Y, Wang J Y, Li W Z, Ju M T 2016 J. Mater. Eng. 44 103(in Chinese) [陈昱, 王京钰, 李维尊, 鞠美庭 2016 材料工程 44 103]

    [4]

    Wang Z Y, Huang B B, Dai Y 2017 Mater. China 36 7(in Chinese) [王泽岩, 黄柏标, 戴瑛 2017 中国材料进展 36 7]

    [5]

    Jin T, Dai Y 2017 Acta Phys. Chem. Sin. 33 295(in Chinese) [荆涛, 戴瑛 2017 物理化学学报 33 295]

    [6]

    Huang H W, Han X, Li X W, Wang S H, Chu P K, Zhang Y H 2015 Acs Appl. Mater. Interfaces 7 482

    [7]

    Jiang J, Zhang X, Sun P B, Zhang L Z 2011 J. Phys. Chem. C 115 20555

    [8]

    Huang H W, He Y, Lin Z S, Kang L, Zhang Y H 2013 J. Phys. Chem. C 117 22986

    [9]

    Wei Y P, Yang Q L, Guo L 2009 Prog. Chem. 21 1734(in Chinese) [魏平玉, 杨青林, 郭林 2009 化学进展 21 1734]

    [10]

    Wang J J, Zhang M, Meng J, Li Q X, Yang J L 2017 RSC Adv. 7 24446

    [11]

    Zhao Z Y, Dai W W 2015 Inorg. Chem. 54 10732

    [12]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat Nanotechnol. 3 206

    [13]

    Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Yun H N, Zhu Z H, Amal R, Smith S C 2012 J. Am. Chem. Soc. 134 4393

    [14]

    Gao H T, Li X H, L J, Liu G J 2013 J. Phys. Chem. C 117 16022

    [15]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 169

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Monkhorst H J, Pack D 1976 Phys. Rev. B 13 5188

    [19]

    Grimme S 2006 J. Comp. Chem. 27 1787

    [20]

    Zhang H, Liu L, Zhou Z 2012 RSC Adv. 2 9224

    [21]

    Garg R, Dutta N K, Choudhury N R 2014 Nanomate- rials 4 267

    [22]

    Gajdos M, Hummer K, Kresse G, Furthmller J, Bechstedt F 2006 Phys. Rev. B 73 045112

  • [1] 田馨, 舒鹏丽, 张珂童, 曾德超, 姚志飞, 赵波慧, 任晓森, 秦丽, 朱强, 魏久焱, 温焕飞, 李艳君, 菅原康弘, 唐军, 马宗敏, 刘俊. Au/CeO2(111)表面吸附的电荷转移特性研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241522
    [2] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望. 物理学报, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [5] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [6] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [7] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [8] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [9] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [10] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 物理学报, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [11] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [12] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究. 物理学报, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [13] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [14] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [15] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [16] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [17] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [18] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [19] 曹柱荣, 蔡晓红, 于得洋, 杨 威, 卢荣春, 邵曹杰, 陈熙萌. 高电荷态Xe离子与He原子碰撞中的电子转移过程研究. 物理学报, 2004, 53(9): 2943-2946. doi: 10.7498/aps.53.2943
    [20] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理. 物理学报, 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
计量
  • 文章访问数:  8399
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-12
  • 修回日期:  2018-02-28
  • 刊出日期:  2018-06-05

/

返回文章
返回