搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于射频传输线制备的YBCO薄膜工艺开发与特性

田清文 原蒲升 余慧勤 汪书娜 刘晓宇 李凌云 尤立星

引用本文:
Citation:

用于射频传输线制备的YBCO薄膜工艺开发与特性

田清文, 原蒲升, 余慧勤, 汪书娜, 刘晓宇, 李凌云, 尤立星

Process development and characteristics of YBCO thin film for RF tranmission wire preparation

TIAN Qingwen, YUAN Pusheng, YU Huiqin, WANG Shuna, LIU Xiaoyu, LI Lingyun, YOU Lixing
PDF
HTML
导出引用
  • 本文介绍了一种由超导带材机械冷剥离薄膜制备共面波导柔性传输线的工艺方法. 剥离加工后的YBCO薄膜超导转变温度宽度为0.79 K, 相较于原带材的转变宽度升高了0.3 K, 在77 K, 0 T下临界电流密度为7.7×105 A/cm2, 具有带材75%以上的临界电流密度. 将剥离的YBCO薄膜制成长12 cm、宽1 cm PI-YBCO-PI三层结构的传输线, 测得40—4.2 K的漏热值为0.238 mW. 在1 cm宽的YBCO薄膜上制备5条信号通道, 仿真得相邻信号通道间的串扰小于–40 dB, 每条通道在9 GHz处的插损小于–2 dB, 每条信号通道的漏热值为47.6 μW.
    Low-temperature interconnection technology, especially RF signal transmission in the 40–4.2 K temperature range, is currently a focus of development. In this temperature range, the transmission line needs to have as little insertion loss and heat leakage as possible. A processing method of preparing coplanar waveguide flexible transmission lines by mechanically cold exfoliating superconducting tape thin films is introduced in this work. Especially YBCO thin films deposited through MOD are more easily exfoliate directly at room temperature. The superconducting transition temperature width of YBCO thin film after exfoliating processing is 0.79 K. Although it is increased by 0.3 K compared with the transition temperature width of the strip, the critical current density at 77 K and 0 T is 7.7 × 105 A/cm2, which is more than 75% of the critical current density of the strip. The exfoliated YBCO thin film is fabricated into a 12-cm-long and 1-cm-wide PI-YBCO-PI three-layer structure transmission line, and the heat leak value is measured to be 0.238 mW in a temperature range from 40 K to 4.2 K. Five signal channels are prepared on a 1cmwide YBCO thin film, and the simulation shows that the crosstalk between adjacent signal channels is <–40 dB, the insertion loss at 9 GHz is <–2 dB, and the heat leak value of each signal channel is 47.6 μW. Compared with the metal transmission lines currently used in this temperature range, the heat leakage is reduced by at least 5 times.
  • 图 5  (a) YBCO微桥器件SEM图片; (b)微桥宽度; (c), (d)高分辨率YBCO表面

    Fig. 5.  (a) SEM image of YBCO microbridge device; (b) microbridge width; (c), (d) high resolution YBCO surface.

    图 1  (a)带材整体结构示意图; (b), (c) YBCO薄膜剥离步骤

    Fig. 1.  (a)Schematic diagram of the overall structure of the strip; (b), (c) steps for exfoliating YBCO thin film.

    图 2  (a)脱落的镍基基底; (b), (c)光学显微镜下的镍基表面

    Fig. 2.  (a) Nickel based substrate; (b), (c) nickel based surface under optical microscope.

    图 3  (a)剥离的YBCO薄膜粘于PI; (b)腐蚀铜层、银层后的YBCO样品; (c)腐蚀后的YBCO薄膜粘于硅片; (d)裁剪完成后的样品

    Fig. 3.  (a) Exfoliated YBCO film and stick it to PI; (b) YBCO samples after corrosion of copper and silver layers; (c) corrosion induced YBCO thin film adhered to silicon wafer; (d) sample after cutting is completed.

    图 4  漏热样品实物图

    Fig. 4.  Physical picture of heat leakage sample.

    图 6  (a) 2G带材R-T曲线; (b)带铜、银的YBCO薄膜R-T曲线; (c) 带银的YBCO薄膜R-T曲线; (d) YBCO薄膜R-T曲线; (e), (f) $ {T}_{{\mathrm{c}}}^{{\mathrm{Z}}{\mathrm{e}}{\mathrm{r}}{\mathrm{o}}}, {T}_{{\mathrm{c}}}^{{\mathrm{O}}{\mathrm{n}}{\mathrm{s}}{\mathrm{e}}{\mathrm{t}}} $随磁场变化曲线

    Fig. 6.  (a) 2G strip R-T curve; (b) R-T curve of YBCO thin film with copper and silver; (c) R-T curve of YBCO thin film with silver; (d) YBCO thin film R-T curve; (e), (f) $ {T}_{{\mathrm{c}}}^{{\mathrm{Z}}{\mathrm{e}}{\mathrm{r}}{\mathrm{o}}}, {T}_{{\mathrm{c}}}^{{\mathrm{O}}{\mathrm{n}}{\mathrm{s}}{\mathrm{e}}{\mathrm{t}}} $versus magnetic field variation curve

    图 7  (a), (b)不同YBCO薄膜微桥器件的I-V测试曲线

    Fig. 7.  (a), (b) I-V test curves of different YBCO thin film micro-bridge devices.

    图 8  YBCO薄膜临界电流密度随磁场变化曲线 (a)样品1; (b)样品2

    Fig. 8.  Curve of critical current density of YBCO thin film as a function of magnetic field: (a) Sample 1; (b) sample 2.

    图 9  信号通道插损和相邻通道间的串扰

    Fig. 9.  Signal channel insertion loss and crosstalk between adjacent channels.

    表 1  不同机构低温传输线漏热值对比(12 cm, 40—4.2 K)

    Table 1.  Leakage heat value of low-temperature transmission lines in different institutions (12 cm, 40–4.2 K).

    传输线类型 金属传输线 超导传输线(YBCO)
    传输线 机构A同轴线 机构B同轴线 PI-YBCO-PI YBCO-Kapton
    漏热/μW 1100 255 47.6 127
    插损@1 GHz-dB/m 4 5 0.83
    插损@6 GHz-dB/m 7.2 2
    下载: 导出CSV
  • [1]

    Holmes D S, Ripple A L, Manheimer M A 2013 IEEE Trans. Appl. Supercond. 23 1701610Google Scholar

    [2]

    原蒲升, 余慧勤, 汪书娜, 王永良, 李凌云, 尤立星 2020 低温物理学报 42 117

    Yuan P S, Yu H Q, Wang S N, Wang Y L, Li L Y, You L X 2020 Low. Temp. Phys. Lett. 42 117

    [3]

    Zhang T Z, Huang J, Zhang X Y, Ding C M, Yu H Q, You X, Lv C L, Liu X Y, Wang Z, You L X, Xie X M, Li H 2024 Photonics Res. 12 1328Google Scholar

    [4]

    COAD Y S 2022 US Patent 0 237 491

    [5]

    Gupta D, Sarwana S, Kirichenko D, Dotsenko V, Lehmann A E, Filippov T V, Chang S W, Ravindran P, Bardin J 2021 IEEE Trans. Appl. Supercond. 29 130328

    [6]

    段思宇, 吴敬波, 范克彬, 张彩虹, 金飚兵, 陈健, 吴培亨 2022 功能材料与器件学报 7 18

    Duan S Y, Wu J B, Fan K B, Zhang G H, Jin B B, Chen J, Wu P H 2022 J. Funct. Mater. Devices 7 18

    [7]

    Smith J P, Mazin B A, Walter A B, Daal M, Bailey I I, Bockstiegel C, Zobrist N, Swimmer N, Steiger S, Fruitwala N 2021 IEEE Trans. Appl. Supercond. 31 2500105

    [8]

    Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A, Wallraff A 2018 Nature 558 264Google Scholar

    [9]

    Li L M, He L, Wu X, Niu X K, Wan C, Lin K, Jia X Q, Zhang L B, Zhao Q Y, Tu X C 2021 FITEE 22 1666Google Scholar

    [10]

    Krinner S, Storz S, Kurpiers P, Magnard P, Heinsoo J, Keller R, Luetolf J, Eichler C, Wallraff A 2018 EPJ Quantum Technol. 6 2

    [11]

    汪书娜, 余慧勤, 原蒲升, 王永良, 李凌云, 尤立星 2020 低温与超导 50 85

    Wang S N, Yu H Q, Yuan P S, Wang Y L, Li L Y, You L X 2020 Cryo. Supercond. 50 85

    [12]

    禹潇, 张亚辉, 宾峰, 陆勤龙, 王生旺 2022 功能材料与器件学报 1 6

    Yu X, Zhang Y H, Bin F, Lu Q L, Wang S W 2022 J. Funct. Mater. Devices 1 6

    [13]

    Solovyov V, Farrell P 2017 Supercond. Sci. Technol. 30 014006Google Scholar

    [14]

    Solovyov V, Rabbani S, Ma M, Mendleson Z, Haugan T, Farrell P 2019 Supercond. Sci. Technol. 32 054006Google Scholar

    [15]

    Solovyov V, Saria O P, Mendleson Z, Drozdow I 2021 IEEE Trans. Appl. Supercond. 31 1700105

    [16]

    Solovyov V, Kim H, Farrell P 2024 IEEE Trans. Appl. Supercond. 34 1500205

    [17]

    Bruel M 1996 Phys. Res. B 108 313

    [18]

    Toyoda M, Hou S, Huang Z H, Lnagaki M 2023 Carbon Lett. 33 335Google Scholar

    [19]

    Saliba M, Atanas J P, Howayek T M, Habchi R 2023 Nanoscale Adv. 5 6787Google Scholar

    [20]

    Solovyov V F, Develos-Bagarinao K, Li Q, Qing J, Zhou j 2010 Supercond. Sci. Technol. 23 014008Google Scholar

    [21]

    王明江 2020 博士学位论文(成都: 西南交通大学)

    Wang M J 2020 Ph. D. Dissertation (Chendu: Southwest Jiaotong University

    [22]

    Pahlke P, Trommler S, Holzapfel B, Schultz L, Hühne R 2013 J. Appl. Phys. 113 123907Google Scholar

    [23]

    Toyota N, Inoue A, Fukase T, Masumoto T 1984 J. Low Temp. Phys. 55 393Google Scholar

    [24]

    Nakao K, Miura N, Tatsuhara K, Takeya H, Takei H 1989 Phys. Rev. Lett. 63 97Google Scholar

    [25]

    Sutherland M L, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520Google Scholar

  • [1] 易栖如, 熊沛雨, 王焕华, 李港, 王云开, 董恩阳, 陈雨, 沈治邦, 吴云, 袁洁, 金魁, 高琛. YBa2Cu3O7–δ薄膜微结构的同步辐射三维倒空间扫描研究. 物理学报, doi: 10.7498/aps.72.20221776
    [2] 叶志红, 张杰, 周健健, 苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报, doi: 10.7498/aps.69.20191214
    [3] 邹建龙, 沈瑶, 马西奎. 终端含NMOS反相器传输线系统中的时空复杂行为分析. 物理学报, doi: 10.7498/aps.61.170514
    [4] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究. 物理学报, doi: 10.7498/aps.61.162902
    [5] 徐航, 王安帮, 韩晓红, 马建议, 王云才. 混沌信号相关法测量电介质传输线的断点及阻抗失配. 物理学报, doi: 10.7498/aps.60.090503
    [6] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究. 物理学报, doi: 10.7498/aps.60.102901
    [7] 张利伟, 王佑贞, 赫丽, 许静平. 基于传输线的单负材料双层结构的隧穿性质. 物理学报, doi: 10.7498/aps.59.6106
    [8] 高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安. 左手材料微结构构型的传输线比拟模型. 物理学报, doi: 10.7498/aps.59.8566
    [9] 万健如, 刘英培, 周海亮. 基于传输线理论电力高频脉冲在电缆上的传输与反射研究. 物理学报, doi: 10.7498/aps.59.2948
    [10] 刘腊群, 蒙林, 邓建军, 宋盛义, 邹文康, 刘大刚, 刘盛纲. 磁绝缘传输线中心汇流区数值模拟的实现. 物理学报, doi: 10.7498/aps.59.1643
    [11] 吴振军, 王丽芳, 廖承林. 分析端接频变负载的多导体传输线FDTD新方法. 物理学报, doi: 10.7498/aps.58.6146
    [12] 李有权, 付云起, 张辉, 袁乃昌. 基于传输线模型的高阻表面反射相位分析. 物理学报, doi: 10.7498/aps.58.3949
    [13] 李海洋, 张冶文, 王蓬春, 李贵泉. 基于谐振结构的左右手传输线的奇异传输性质. 物理学报, doi: 10.7498/aps.56.6480
    [14] 郝建红, 丁 武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象. 物理学报, doi: 10.7498/aps.55.4789
    [15] 蔡衍卿, 姚 忻, 李 刚. 关于YBCO薄膜过热现象的研究. 物理学报, doi: 10.7498/aps.55.844
    [16] 王忠纯. 介观耗散传输线的量子化. 物理学报, doi: 10.7498/aps.52.2870
    [17] 刘景和, 孙 强, 刘向东, 刑宏岩, 李建利, 李国桢, 黄宗坦, 黄承彩, 李 丹, 黄江平. YBCO半导体薄膜及Bolometer特性. 物理学报, doi: 10.7498/aps.49.2017
    [18] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, doi: 10.7498/aps.49.1348
    [19] 曾令儒. 特种截面传输线特性阻抗计算的一种方法. 物理学报, doi: 10.7498/aps.31.709
    [20] 曾令儒. 平行板-内正方柱耦合传输线的特性阻抗. 物理学报, doi: 10.7498/aps.31.840
计量
  • 文章访问数:  291
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2024-12-11
  • 上网日期:  2025-01-08

/

返回文章
返回