搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波谐振腔中磁双层的零阻尼效应

尹凡 戴昌杰 张影 于海林 肖杨

引用本文:
Citation:

微波谐振腔中磁双层的零阻尼效应

尹凡, 戴昌杰, 张影, 于海林, 肖杨

Zero damping conditions of magnetic bilayer in microwave cavity

YIN Fan, DAI Changjie, ZHANG Ying, YU Hailin, XIAO Yang
PDF
导出引用
  • 实验和理论研究表明单个磁子模式与谐振腔光子能够形成相干型与耗散型耦合,这两个耦合通道的干涉会产生零阻尼效应。本工作将零阻尼效应拓展到两个磁子模式,研究了微波谐振腔中磁双层的零阻尼效应。基于本征频率和微波透射谱,我们推导了两个磁子模式的零阻尼产生条件以及频率失谐的表达式,并与数值计算的微波透射谱进行了比较,获得了零阻尼与系统参数之间的关系。此外,我们也分析了磁双层中界面交换耦合引起的磁子-磁子直接耦合带来的影响。由于零阻尼对应的微波透射谱的线宽非常的窄,因而本工作对于设计基于磁子零阻尼效应的量子传感器件是具有重要意义的。
    Experimental and theoretical studies have demonstrated that single magnon mode and cavity photon can be coupled coherently and dissipatively, in which the interference between two types of coupling will give rise to zero damping condition. In magnetic bilayers or multilayers, there exist more than one magnon modes which could be directly coupled by interface exchange interaction. In this work, we extend single magnon mode to two magnon modes and study the effect of two magnon modes on zero damping condition. Using eigenfrequency analysis and microwave transmission spectra, we derive analytical expressions of zero damping condition and the frequency detuning. By comparing analytical results to numerical results, we obtain the dependence of zero damping condition on system parameters. In the absence of direct interface exchange magnon-magnon coupling, the zero damping condition occurs for dissipative coupling or hybrid coupling. As the coupling strength increases, the distance between two zero damping conditions increases. For hybrid coupling, the curves become asymmetric around the point of zero detuning, which is different from pure coupling. Moreover, we study the effect of interface exchange magnon-magnon interaction on zero damping condition. The interface exchange coupling results in the splitting of microwave transmission spectra, but the zero damping condition occurs for low-frequency mode only. As the interface exchange coupling strength increases, the frequency at which the zero damping condition happens will shift to lower frequency. Due to extremely narrow line-width of microwave transmission dip at the zero damping condition, our work is expected to be useful for the design of magnon-based quantum sensing devices.
  • [1]

    Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401

    [2]

    Soykal O O, Flattxe M E 2010 Phys. Rev. Lett. 104 077202

    [3]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405

    [4]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003

    [5]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603

    [6]

    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E 2014 Phys. Rev. Appl. 2 054002

    [7]

    Cao Y, Yan P, Huebl H, Goennenwein S T B, Bauer G E W 2015 Phys. Rev. B 91 094423

    [8]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C-M 2015 Phys. Rev. Lett. 114 227201

    [9]

    Bernier N R, Txoth L D, Feofanov A K, Kippenberg T J 2018 Phys. Rev. A 98 023841

    [10]

    Yu W, Wang J, Yuan H Y, Xiao J 2019 Phys. Rev. Lett. 123 227201

    [11]

    Grigoryan V L, Shen K, Xia K2018 Phys. Rev. B 98 024406

    [12]

    Wu W J, Xu D, Qian J, Li J, Wang Y P, You J Q 2022 Chin. Phys. B 31 127503

    [13]

    Bao X X, Guo G F, Yang X, Tan L 2023 Chin. Phys. B 32 080301

    [14]

    Liao Q, Peng K, Qiu H 2023 Chin. Phys. B 32 054205

    [15]

    Liu T, Zhang X, Tang H X, Flatte M E 2016 Phys. Rev. B 94 060405(R)

    [16]

    Rameshti B. Zare, Kusminskiy S. Viola, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C.-M, Tang H X, Bauer G E, Blanter Y M 2022 Phys. Rep. 979 1

    [17]

    Harder M, Yao B, Gui Y, Hu C-M 2021 J. Appl. Phys. 129 201101

    [18]

    Yuan H, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1

    [19]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Exp. 12 070101

    [20]

    Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K, Nakamura Y 2020 Science 367 425

    [21]

    Pan H, Yang Y, An Z, Hu Can-Ming 2022 Phys. Rev. B 106 054425

    [22]

    Hyde P, Yao B M, Gui Y S, Zhang Guo-Qiang, You J Q, Hu C-M 2018 Phys. Rev. B 98 174423

    [23]

    Bi M X, Yan X H, Xiao Y, Dai C J 2019 J. Appl. Phys. 126 173902

    [24]

    Bi M X, Yan X H, Zhang Y, Xiao Y 2021 Phys. Rev. B 103 104411

    [25]

    Wang Y-P, Zhang G-Q, Zhang D, Li T-F, Hu C-M, You J Q 2018 Phys. Rev. Lett. 120 057202

    [26]

    Sharma S, Bittencourt V A S V, Karenowska A D, Kusminskiy S V 2021 Phys. Rev. B 103 L100403

    [27]

    Hei X L, Li P B, Pan X F, Nor F 2023 Phys. Rev. Lett. 130 073602

    [28]

    Yuan H Y, Yan P, Zheng S, He Q Y, Xia K, Yung M-H 2020 Phys. Rev. Lett. 124 053602

    [29]

    Li J, Zhu S-Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601

    [30]

    Yang J, Zhao C, Wang D-W, Peng R, Zhou L 2024 Phys. Rev. Appl. 21 044056

    [31]

    Sun F X, Zheng S S, Xiao Y, Gong Q, He Q, Xia K 2021 Phys. Rev. Lett. 127 087203

    [32]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601

    [33]

    Haigh J A, Nunnenkamp A, Ramsay A J, Ferguson A J 2016 Phys. Rev. Lett. 117 133602

    [34]

    Zhang X, Zhu N, Zou C-L, Tang H X 2016 Phys. Rev. Lett. 117 123605

    [35]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602

    [36]

    Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L, Hu C-M 2018 Phys. Rev. Lett. 121 137203

    [37]

    Yang Y, Rao J W, Gui Y S, Yao B M, Lu W, Hu C M 2019 Phys. Rev. Appl. 11 054023

    [38]

    Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202

    [39]

    Zhang X, Zou C, Zhu N, Marquardt F, Jiang L, Tang H X 2015 Nature Commun. 6 8914

    [40]

    Nair J M P, Mukhopadhyay D, Agarwal G S 2022 Phys. Rev. B 105 214418

    [41]

    Zhang Q, Xue J S, Sun Y T, Guo J J, Chen Y X, Tian Y F, Yan S S, Bai L H 2021 Phys. Rev. B 104 094303

    [42]

    Zhang D, Song W, Chai G 2017 J. Phys. D: Appl. Phys. 50 205003

    [43]

    An K, Kohno R, Litvinenko A N, Seeger R L, Naletov V V, Vila L, De Loubens G, Youssef J B, Vukadinovic N, Bauer G E W, Slavin A N, Tiberkevich V S, Klein O 2022 Phys. Rev. X 12 011060

    [44]

    Tserkovnyak Y, Brataas A, Bauer G E W, Halperin B I 2005 Rev. Mod. Phys. 77 1375

    [45]

    Ma K, Li C, Hao Z, Ong C K, Chai G 2023 Phys. Rev. B 108 094422

    [46]

    Zhan X, Zhang Y, Yan X, Xiao Y 2021 J. Appl. Phys. 130 123901

    [47]

    Mahan G D 2000 Many-Particle Physics (Kluwer Academic/Plenum Publishers)

    [48]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098

    [49]

    Chen J, Liu C, Liu T, Xiao Y, Xia K, Bauer G E W, Wu M, Yu H 2018 Phys. Rev. Lett. 120 217202

  • [1] 徐明慧, 刘晓敏, 史佳佳, 张冲, 张静, 杨荣国, 郜江瑞. 微波-声子与光-磁纠缠态的产生. 物理学报, doi: 10.7498/aps.74.20241664
    [2] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, doi: 10.7498/aps.73.20231589
    [3] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程. 物理学报, doi: 10.7498/aps.71.20221385
    [4] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性. 物理学报, doi: 10.7498/aps.70.20210234
    [5] 黄港膑, 王菊, 王文睿, 贾石, 于晋龙. 一种基于串联谐振腔的高性能光电振荡器. 物理学报, doi: 10.7498/aps.65.044204
    [6] 钟苏川, 蔚涛, 张路, 马洪. 具有质量及频率涨落的欠阻尼线性谐振子的随机共振. 物理学报, doi: 10.7498/aps.64.020202
    [7] 李培, 王辅忠, 张丽珠, 张光璐. 左手介质对谐振腔谐振频率的影响. 物理学报, doi: 10.7498/aps.64.124103
    [8] 张良英, 曹力, 吴大进. 周期外力对频率涨落的过阻尼谐振子所作的功和能量随机共振. 物理学报, doi: 10.7498/aps.62.190502
    [9] 陆志新, 曹力. 输入方波信号的过阻尼谐振子的随机共振. 物理学报, doi: 10.7498/aps.60.110501
    [10] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, doi: 10.7498/aps.60.048404
    [11] 张莉, 刘立, 曹力. 过阻尼谐振子的随机共振. 物理学报, doi: 10.7498/aps.59.1494
    [12] 李正红, 孟凡宝, 常安碧, 胡克松. 利用场耦合理论研究开放微波谐振腔. 物理学报, doi: 10.7498/aps.53.3627
    [13] 史庆藩, 郑俊娟, 王 琪. 微波谐振腔Q值对磁激子振幅不稳定态阈值的影响. 物理学报, doi: 10.7498/aps.53.3535
    [14] 凌瑞良. 含时阻尼谐振子的传播子与严格波函数. 物理学报, doi: 10.7498/aps.50.1421
    [15] 凌瑞良, 冯金福. 阻尼谐振子的严格波函数. 物理学报, doi: 10.7498/aps.47.1952
    [16] 崔广霁, 孟小凡, 邵凯. 谐振型Josephson隧道结与外加微波的磁耦合(Ⅰ). 物理学报, doi: 10.7498/aps.31.1-2
    [17] 崔广霁, 孟小凡, 邵凯. 谐振型Josephson隧道结与外加微波的磁耦合(Ⅱ). 物理学报, doi: 10.7498/aps.31.8
    [18] 李强法, 徐承和. 缓变截面波导开放谐振腔的微波网络分析. 物理学报, doi: 10.7498/aps.30.936
    [19] 彭桓武. 阻尼谐振子的量子力学处理. 物理学报, doi: 10.7498/aps.29.1084
    [20] 方洪烈. 多元件谐振腔的正则描述. 物理学报, doi: 10.7498/aps.28.430
计量
  • 文章访问数:  52
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-14

/

返回文章
返回