-
研究了驱动场分别从正向和反向输入时, 量子点-双腔磁光机械系统中的磁振子双稳态行为的调控. 结果表明, 当系统满足阻抗匹配条件时, 正向和反向输入的驱动场引起的磁振子响应具有一致性; 而在阻抗匹配条件不成立时, 系统的双稳态特性表现出更低的阈值, 即驱动场强度较小可实现从低稳态到高稳态的跃迁. 此外, 研究还发现, 通过调节量子点间隧穿耦合强度、腔与量子点的耦合强度以及两腔之间的耦合强度, 可以灵活控制双稳态阈值和磁滞回线的宽度, 从而在较低的驱动场强度下实现高效的光学开关功能. 该研究为基于磁振子的量子开关器件、信息存储及远程相互作用调控提供了新思路, 并展示了在低功耗自旋逻辑器件与量子计算中的潜在应用价值.Magnons, as quasiparticles arising from spin wave excitations in magnetic materials, have demonstrated significant application potential in quantum information technology, spintronics, and microwave engineering in recent years. The cavity magnon optomechanical system, serving as a key platform for investigating magneto-optical interactions, has advanced the exploration of nonlinear dynamical behaviors and the innovative design of quantum devices through strong coupling between magnons, photons, and phonons. However, traditional single-cavity systems face limitations in terms of tunability, long-range interactions, and nonlinear enhancement, making them insufficient for complex quantum control requirements. In recent years, dual-cavity systems have become a research hotspot due to their multidimensional control capabilities achieved through inter-cavity coupling, such as photon mode splitting and enhanced nonlinear Kerr effects. Meanwhile, semiconductor quantum dots, provide a novel pathway for regulating magnon dynamics due to their tunable nonlinear response characteristics. In this work, we construct a novel coupled quantum system by integrating quantum dots and a dual-cavity architecture, and investigate the bistable phenomena under both forward and backward driving field inputs. By comparing the third-order nonlinear equations governing magnon populations in the two scenarios, we derive the impedance matching condition. When this condition is satisfied, the magnon responses induced by forward driving field and backward driving field are identical. Conversely, under impedance mismatch, the magnon responses exhibit different behaviors. Specifically, when the impedance matching condition is violated, the dual-cavity magnon optomechanical system incorporating three-level quantum dot molecules exhibits a lower bistability threshold than its counterpart without quantum dots. This allows for a transition from low steady state to high steady state while reducing the driving field strength, thereby achieving switching functionality at lower input power. Furthermore, we establish a multiparameter cooperative control model, revealing a three-dimensional parameter space formed by tunneling coupling, cavity-quantum dot coupling, and inter-cavity coupling. By adjusting these coupling strengths, the bistability threshold and hysteresis loop width can be effectively controlled, thereby modulating the driving field intensity required for bistability. This system is expected to experimentally observe the magnonic bistability through the vector network analyzer-based detection of abrupt changes in transmission or absorption windows in reflection spectra. Such capabilities can advance data signal transmission, switching devices, and memory technologies, and has the potential to serve as components of large-scale quantum information processing units. Additionally, this research may find important applications in the field of magnetic spintronics.
-
Keywords:
- cavity optomagnonics /
- magnonic bistability /
- quantum dot molecules
-
图 2 阻抗匹配条件对磁振子数随驱动场强度的变化曲线的影响 (a)阻抗匹配条件满足, $ J = \sqrt {{{\left( {\varLambda _1^2 + \varLambda _2^2} \right)} {/ } 3}} $; (b)阻抗匹配被打破, $ J = 2\pi \times 2{\text{ MHz}} $; 其他参数: $ {T_{\text{e}}} = 20{\text{ MHz}} $, $ {\varDelta _{\text{m}}} = 0{\text{ MHz}} $, $ {g_{{\text{cq}}}} = 2{\text{π}} \times 10{\text{ MHz}} $
Fig. 2. Effect of impedance matching condition on the variation curves of the number of magnons with respect to the drive field intensity: (a) Impedance matching is satisfied, $ J = \sqrt {{{\left( {\varLambda _1^2 + \varLambda _2^2} \right)} {/ } 3}} $; (b) impedance matching is broken, $ J = 2{\text{π}} \times 2{\text{ MHz}} $. Other parameters used are: $ {T_{\text{e}}} = 20{\text{ MHz}} $, $ {\varDelta _{\text{m}}} = 0{\text{ MHz}} $, $ {g_{{\text{cq}}}} = 2{\text{π}} \times 10{\text{ MHz}} $, respectively.
图 3 (a)在$ {\varepsilon _1} \ne 0 $和$ {\varepsilon _2} = 0 $时, 不同隧穿耦合强度下, 磁振子数随驱动场强度的变化; (b)在$ {\varepsilon _1} = 0 $和$ {\varepsilon _2} \ne 0 $时, 不同隧穿耦合强度下, 磁振子数随驱动场强度的变化; 其他参数与图2相同
Fig. 3. Variation curves of the number of magnons with respect to the drive field intensity for different tunneling coupling strengths between semiconductor quantum dots under forward input (a) and reverse input (b): (a) $ {\varepsilon _1} \ne 0 $, $ {\varepsilon _2} = 0 $; (b) $ {\varepsilon _1} = 0 $, $ {\varepsilon _2} \ne 0 $. Other parameters used are the same as Fig. 2.
图 4 在不同腔与量子点的耦合强度下, 磁振子数随驱动场强度的变化 (a) $ {\varepsilon _1} \ne 0 $, $ {\varepsilon _2} = 0 $; (b) $ {\varepsilon _1} = 0 $, $ {\varepsilon _2} \ne 0 $. 其他参数与图2相同
Fig. 4. Variation curves of the number of magnons with respect to the drive field intensity for different coupling strengths between the cavity and the quantum dots under forward input (a) and reverse input (b): (a) $ {\varepsilon _1} \ne 0 $, $ {\varepsilon _2} = 0 $; (b) $ {\varepsilon _1} = 0 $, $ {\varepsilon _2} \ne 0 $. Other parameters used are the same as Fig. 2.
图 5 在驱动场正向输入(a)和反向输入(b)时, 不同两腔之间耦合强度下, 磁振子数随驱动场强度的变化 (a) $ {\varepsilon _1} \ne 0 $, $ {\varepsilon _2} = 0 $; (b) $ {\varepsilon _1} = 0 $, $ {\varepsilon _2} \ne 0 $. 其他参数: 与图2相同
Fig. 5. Variation curves of the number of magnons with respect to the drive field intensity for different coupling strengths between the two cavities under forward input (a) and reverse input (b): (a) $ {\varepsilon _1} \ne 0 $, $ {\varepsilon _2} = 0 $; (b) $ {\varepsilon _1} = 0 $, $ {\varepsilon _2} \ne 0 $. Other parameters used are the same as Fig. 2.
-
[1] Chumak A V, Serga A A, Hillebrands B 2014 Nat. Commun. 5 4700
Google Scholar
[2] Yuan H Y, Yung M H 2018 Phys. Rev. B 95 060405
[3] Zhang X F, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401
Google Scholar
[4] Sharma S, Blanter Y M, Bauer G E W 2018 Phys. Rev. Lett. 121 087205
Google Scholar
[5] Wang B, Jia X, Lu X H, Xiong H 2022 Phys. Rev. A 105 053705
Google Scholar
[6] Ghasemian E, Rafeie M, Musavi S A S, Kheirabady M S, Tavassoly M K 2024 Eur. Phys. J. Plus 139 694
Google Scholar
[7] Liao Q H, Peng K, Qiu H Y 2023 Chin. Phys. B 32 054205
Google Scholar
[8] Liao Q H, Xiao X, Nie W J, Zhou N R 2020 Opt. Express 28 5288
Google Scholar
[9] 黄标, 于晋龙, 王文睿, 王菊, 薛纪强, 于洋, 贾石, 杨恩泽 2015 物理学报 64 044204
Google Scholar
Huang B, Yu J L, Wang W R, Wang J, Xue J Q, Yu Y, Jia S, Yang E Z 2015 Acta Phys. Sin. 64 044204
Google Scholar
[10] Soykal O O, Flatté M E 2010 Phys. Rev. Lett. 104 077202
Google Scholar
[11] Soykal O O, Flatté M E 2010 Phys. Rev. B 82 104413
Google Scholar
[12] Li H Y 2020 Ceram. Int. 46 15408
Google Scholar
[13] Mukherjee K, Jana P C 2023 J. Korean Phys. Soc. 82 356
[14] Bhatt V, Singh M K, Agrawal A, Jha P K, Bhattacherjee A B 2024 J. Opt. Soc. Am. B: Opt. Phys. 41 1187
Google Scholar
[15] Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601
Google Scholar
[16] Li J, Wang Y P, You J Q, Zhu S Y 2023 Natl. Sci. Rev. 10 nwac247
Google Scholar
[17] Yu M, Shen H, Li J 2020 Phys. Rev. Lett. 124 213604
Google Scholar
[18] Fan Z Y, Qiu L, Groblacher S, Li J 2023 Laser Photonics Rev. 17 2200866
Google Scholar
[19] Li H T, Fan Z Y, Zhu H B, Groblacher S, Li J 2024 Laser Photonics Rev. 19 2401348
[20] Qian H, Fan Z Y, Li J 2022 Quantum Sci. Technol. 8 015022
[21] Fabiha R, Lundquist J, Majumder S 2022 Adv. Sci. 9 2104644
Google Scholar
[22] Zhang D K, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Commun. 8 1368
Google Scholar
[23] Wang Y P, Zhang G Q, Zhang D K, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202
Google Scholar
[24] Ghasemian E, Rafeie M, Musavi S A S, Kheirabady M. S, Tavassoly M K 2024 Eur. Phys. J. Plus 139 694
Google Scholar
[25] Wang B, Jia X, Lu X H, Xiong H 2022 Phys. Rev. A 105 053705
Google Scholar
[26] Kurizki G, Bertet P, Kubo Y, Molmerc K, Petrosyand D, Rablf P, Schmiedmayer J 2015 PNAS 112 3866
Google Scholar
[27] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 84 1391
[28] Childress L, Sorensen A S, Lukin M D 2004 Phys. Rev. A 69 042302
Google Scholar
[29] Guo Y, Ma S S, Shu C C 2024 Chin. Phys. B 33 024203
Google Scholar
[30] Petroff P M, Lorke A, Imamoglu A 2001 Phys. Today 54 46
[31] Liu G, Xiong W, Ying Z J 2023 Phys. Rev. A 108 033704
Google Scholar
[32] Ullah K 2019 Phys. Lett. A 383 3074
Google Scholar
[33] Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810
Google Scholar
[34] Kong C, Xiong H, Wu Y 2019 Phys. Rev. Appl. 12 034001
Google Scholar
[35] Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601
Google Scholar
[36] Yadav S, Bhattacherjee A B 2023 Phys. Scr. 98 025102
Google Scholar
[37] Xu X W, Song L N, Zheng Q, Wang Z H, Li Y 2018 Phys. Rev. A 98 063845
Google Scholar
计量
- 文章访问数: 351
- PDF下载量: 22
- 被引次数: 0