搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子点-双腔磁光机械系统中的磁振子双稳态

佘彦超 徐名琪 冯雯雅 刘嘉琦 杨红

引用本文:
Citation:

量子点-双腔磁光机械系统中的磁振子双稳态

佘彦超, 徐名琪, 冯雯雅, 刘嘉琦, 杨红

Magneton bistability in quantum dot-double cavity optomechanical coupling system

SHE Yanchao, XU Mingqi, FENG Wenya, LIU Jiaqi, YANG Hong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 研究了驱动场分别从正向和反向输入时, 量子点-双腔磁光机械系统中的磁振子双稳态行为的调控. 结果表明, 当系统满足阻抗匹配条件时, 正向和反向输入的驱动场引起的磁振子响应具有一致性; 而在阻抗匹配条件不成立时, 系统的双稳态特性表现出更低的阈值, 即驱动场强度较小可实现从低稳态到高稳态的跃迁. 此外, 研究还发现, 通过调节量子点间隧穿耦合强度、腔与量子点的耦合强度以及两腔之间的耦合强度, 可以灵活控制双稳态阈值和磁滞回线的宽度, 从而在较低的驱动场强度下实现高效的光学开关功能. 该研究为基于磁振子的量子开关器件、信息存储及远程相互作用调控提供了新思路, 并展示了在低功耗自旋逻辑器件与量子计算中的潜在应用价值.
    Magnons, as quasiparticles arising from spin wave excitations in magnetic materials, have demonstrated significant application potential in quantum information technology, spintronics, and microwave engineering in recent years. The cavity magnon optomechanical system, serving as a key platform for investigating magneto-optical interactions, has advanced the exploration of nonlinear dynamical behaviors and the innovative design of quantum devices through strong coupling between magnons, photons, and phonons. However, traditional single-cavity systems face limitations in terms of tunability, long-range interactions, and nonlinear enhancement, making them insufficient for complex quantum control requirements. In recent years, dual-cavity systems have become a research hotspot due to their multidimensional control capabilities achieved through inter-cavity coupling, such as photon mode splitting and enhanced nonlinear Kerr effects. Meanwhile, semiconductor quantum dots, provide a novel pathway for regulating magnon dynamics due to their tunable nonlinear response characteristics. In this work, we construct a novel coupled quantum system by integrating quantum dots and a dual-cavity architecture, and investigate the bistable phenomena under both forward and backward driving field inputs. By comparing the third-order nonlinear equations governing magnon populations in the two scenarios, we derive the impedance matching condition. When this condition is satisfied, the magnon responses induced by forward driving field and backward driving field are identical. Conversely, under impedance mismatch, the magnon responses exhibit different behaviors. Specifically, when the impedance matching condition is violated, the dual-cavity magnon optomechanical system incorporating three-level quantum dot molecules exhibits a lower bistability threshold than its counterpart without quantum dots. This allows for a transition from low steady state to high steady state while reducing the driving field strength, thereby achieving switching functionality at lower input power. Furthermore, we establish a multiparameter cooperative control model, revealing a three-dimensional parameter space formed by tunneling coupling, cavity-quantum dot coupling, and inter-cavity coupling. By adjusting these coupling strengths, the bistability threshold and hysteresis loop width can be effectively controlled, thereby modulating the driving field intensity required for bistability. This system is expected to experimentally observe the magnonic bistability through the vector network analyzer-based detection of abrupt changes in transmission or absorption windows in reflection spectra. Such capabilities can advance data signal transmission, switching devices, and memory technologies, and has the potential to serve as components of large-scale quantum information processing units. Additionally, this research may find important applications in the field of magnetic spintronics.
  • 图 1  (a)量子点-双腔磁光机械系统的示意图; (b)三能级量子点分子的能级示意图

    Fig. 1.  (a) Schematic diagram of the composite cavity-magnetic system; (b) schematic diagram of the energy levels of the three-level quantum dot molecules.

    图 2  阻抗匹配条件对磁振子数随驱动场强度的变化曲线的影响 (a)阻抗匹配条件满足, $ J = \sqrt {{{\left( {\varLambda _1^2 + \varLambda _2^2} \right)} {/ } 3}} $; (b)阻抗匹配被打破, $ J = 2\pi \times 2{\text{ MHz}} $; 其他参数: $ {T_{\text{e}}} = 20{\text{ MHz}} $, $ {\varDelta _{\text{m}}} = 0{\text{ MHz}} $, $ {g_{{\text{cq}}}} = 2{\text{π}} \times 10{\text{ MHz}} $

    Fig. 2.  Effect of impedance matching condition on the variation curves of the number of magnons with respect to the drive field intensity: (a) Impedance matching is satisfied, $ J = \sqrt {{{\left( {\varLambda _1^2 + \varLambda _2^2} \right)} {/ } 3}} $; (b) impedance matching is broken, $ J = 2{\text{π}} \times 2{\text{ MHz}} $. Other parameters used are: $ {T_{\text{e}}} = 20{\text{ MHz}} $, $ {\varDelta _{\text{m}}} = 0{\text{ MHz}} $, $ {g_{{\text{cq}}}} = 2{\text{π}} \times 10{\text{ MHz}} $, respectively.

    图 3  (a)在$ {\varepsilon _1} \ne 0 $和$ {\varepsilon _2} = 0 $时, 不同隧穿耦合强度下, 磁振子数随驱动场强度的变化; (b)在$ {\varepsilon _1} = 0 $和$ {\varepsilon _2} \ne 0 $时, 不同隧穿耦合强度下, 磁振子数随驱动场强度的变化; 其他参数与图2相同

    Fig. 3.  Variation curves of the number of magnons with respect to the drive field intensity for different tunneling coupling strengths between semiconductor quantum dots under forward input (a) and reverse input (b): (a) $ {\varepsilon _1} \ne 0 $, $ {\varepsilon _2} = 0 $; (b) $ {\varepsilon _1} = 0 $, $ {\varepsilon _2} \ne 0 $. Other parameters used are the same as Fig. 2.

    图 4  在不同腔与量子点的耦合强度下, 磁振子数随驱动场强度的变化 (a) $ {\varepsilon _1} \ne 0 $, $ {\varepsilon _2} = 0 $; (b) $ {\varepsilon _1} = 0 $, $ {\varepsilon _2} \ne 0 $. 其他参数与图2相同

    Fig. 4.  Variation curves of the number of magnons with respect to the drive field intensity for different coupling strengths between the cavity and the quantum dots under forward input (a) and reverse input (b): (a) $ {\varepsilon _1} \ne 0 $, $ {\varepsilon _2} = 0 $; (b) $ {\varepsilon _1} = 0 $, $ {\varepsilon _2} \ne 0 $. Other parameters used are the same as Fig. 2.

    图 5  在驱动场正向输入(a)和反向输入(b)时, 不同两腔之间耦合强度下, 磁振子数随驱动场强度的变化 (a) $ {\varepsilon _1} \ne 0 $, $ {\varepsilon _2} = 0 $; (b) $ {\varepsilon _1} = 0 $, $ {\varepsilon _2} \ne 0 $. 其他参数: 与图2相同

    Fig. 5.  Variation curves of the number of magnons with respect to the drive field intensity for different coupling strengths between the two cavities under forward input (a) and reverse input (b): (a) $ {\varepsilon _1} \ne 0 $, $ {\varepsilon _2} = 0 $; (b) $ {\varepsilon _1} = 0 $, $ {\varepsilon _2} \ne 0 $. Other parameters used are the same as Fig. 2.

  • [1]

    Chumak A V, Serga A A, Hillebrands B 2014 Nat. Commun. 5 4700Google Scholar

    [2]

    Yuan H Y, Yung M H 2018 Phys. Rev. B 95 060405

    [3]

    Zhang X F, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar

    [4]

    Sharma S, Blanter Y M, Bauer G E W 2018 Phys. Rev. Lett. 121 087205Google Scholar

    [5]

    Wang B, Jia X, Lu X H, Xiong H 2022 Phys. Rev. A 105 053705Google Scholar

    [6]

    Ghasemian E, Rafeie M, Musavi S A S, Kheirabady M S, Tavassoly M K 2024 Eur. Phys. J. Plus 139 694Google Scholar

    [7]

    Liao Q H, Peng K, Qiu H Y 2023 Chin. Phys. B 32 054205Google Scholar

    [8]

    Liao Q H, Xiao X, Nie W J, Zhou N R 2020 Opt. Express 28 5288Google Scholar

    [9]

    黄标, 于晋龙, 王文睿, 王菊, 薛纪强, 于洋, 贾石, 杨恩泽 2015 物理学报 64 044204Google Scholar

    Huang B, Yu J L, Wang W R, Wang J, Xue J Q, Yu Y, Jia S, Yang E Z 2015 Acta Phys. Sin. 64 044204Google Scholar

    [10]

    Soykal O O, Flatté M E 2010 Phys. Rev. Lett. 104 077202Google Scholar

    [11]

    Soykal O O, Flatté M E 2010 Phys. Rev. B 82 104413Google Scholar

    [12]

    Li H Y 2020 Ceram. Int. 46 15408Google Scholar

    [13]

    Mukherjee K, Jana P C 2023 J. Korean Phys. Soc. 82 356

    [14]

    Bhatt V, Singh M K, Agrawal A, Jha P K, Bhattacherjee A B 2024 J. Opt. Soc. Am. B: Opt. Phys. 41 1187Google Scholar

    [15]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [16]

    Li J, Wang Y P, You J Q, Zhu S Y 2023 Natl. Sci. Rev. 10 nwac247Google Scholar

    [17]

    Yu M, Shen H, Li J 2020 Phys. Rev. Lett. 124 213604Google Scholar

    [18]

    Fan Z Y, Qiu L, Groblacher S, Li J 2023 Laser Photonics Rev. 17 2200866Google Scholar

    [19]

    Li H T, Fan Z Y, Zhu H B, Groblacher S, Li J 2024 Laser Photonics Rev. 19 2401348

    [20]

    Qian H, Fan Z Y, Li J 2022 Quantum Sci. Technol. 8 015022

    [21]

    Fabiha R, Lundquist J, Majumder S 2022 Adv. Sci. 9 2104644Google Scholar

    [22]

    Zhang D K, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Commun. 8 1368Google Scholar

    [23]

    Wang Y P, Zhang G Q, Zhang D K, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar

    [24]

    Ghasemian E, Rafeie M, Musavi S A S, Kheirabady M. S, Tavassoly M K 2024 Eur. Phys. J. Plus 139 694Google Scholar

    [25]

    Wang B, Jia X, Lu X H, Xiong H 2022 Phys. Rev. A 105 053705Google Scholar

    [26]

    Kurizki G, Bertet P, Kubo Y, Molmerc K, Petrosyand D, Rablf P, Schmiedmayer J 2015 PNAS 112 3866Google Scholar

    [27]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 84 1391

    [28]

    Childress L, Sorensen A S, Lukin M D 2004 Phys. Rev. A 69 042302Google Scholar

    [29]

    Guo Y, Ma S S, Shu C C 2024 Chin. Phys. B 33 024203Google Scholar

    [30]

    Petroff P M, Lorke A, Imamoglu A 2001 Phys. Today 54 46

    [31]

    Liu G, Xiong W, Ying Z J 2023 Phys. Rev. A 108 033704Google Scholar

    [32]

    Ullah K 2019 Phys. Lett. A 383 3074Google Scholar

    [33]

    Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810Google Scholar

    [34]

    Kong C, Xiong H, Wu Y 2019 Phys. Rev. Appl. 12 034001Google Scholar

    [35]

    Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601Google Scholar

    [36]

    Yadav S, Bhattacherjee A B 2023 Phys. Scr. 98 025102Google Scholar

    [37]

    Xu X W, Song L N, Zheng Q, Wang Z H, Li Y 2018 Phys. Rev. A 98 063845Google Scholar

  • [1] 曾莹, 佘彦超, 张蔚曦, 杨红. 纳米光纤-半导体量子点分子耦合系统中光孤子的存储与读取. 物理学报, doi: 10.7498/aps.73.20240184
    [2] 史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输. 物理学报, doi: 10.7498/aps.71.20211858
    [3] 杨建勇, 陈华俊. 基于超强耦合量子点-纳米机械振子系统的全光学质量传感. 物理学报, doi: 10.7498/aps.68.20190607
    [4] 郑军, 李春雷, 杨曦, 郭永. 四端双量子点系统中的自旋和电荷能斯特效应. 物理学报, doi: 10.7498/aps.66.097302
    [5] 赵彦辉, 钱琛江, 唐静, 孙悦, 彭凯, 许秀来. 偶极子位置及偏振对激发光子晶体H1微腔的影响. 物理学报, doi: 10.7498/aps.65.134206
    [6] 周洋, 郭健宏. 双量子点结构中Majorana费米子的噪声特性. 物理学报, doi: 10.7498/aps.64.167302
    [7] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, doi: 10.7498/aps.64.077301
    [8] 额尔敦朝鲁, 白旭芳, 韩超. 抛物量子点中强耦合磁双极化子内部激发态性质. 物理学报, doi: 10.7498/aps.63.027501
    [9] 栗军, 刘玉, 平婧, 叶银, 李新奇. 双量子点Aharonov-Bohm干涉系统输运性质的大偏离分析. 物理学报, doi: 10.7498/aps.61.137202
    [10] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, doi: 10.7498/aps.60.044202
    [11] 周运清, 孔令民, 王瑞, 张存喜. 微波作用下有直接隧穿量子点系统中的泵流特性. 物理学报, doi: 10.7498/aps.60.077202
    [12] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, doi: 10.7498/aps.60.057302
    [13] 彭银生, 叶小玲, 徐波, 牛洁斌, 贾锐, 王占国, 梁松, 杨晓红. 二维GaAs 基光子晶体微腔的制作与光谱特性分析. 物理学报, doi: 10.7498/aps.59.7073
    [14] 陈英杰, 肖景林. 抛物线性限制势二能级系统量子点量子比特的温度效应. 物理学报, doi: 10.7498/aps.57.6758
    [15] 王子武, 肖景林. 抛物线性限制势量子点量子比特及其光学声子效应. 物理学报, doi: 10.7498/aps.56.678
    [16] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, doi: 10.7498/aps.56.863
    [17] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, doi: 10.7498/aps.56.4901
    [18] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, doi: 10.7498/aps.55.2027
    [19] 谭华堂, 甘仲惟, 李高翔. 与压缩真空库耦合的单模腔内三量子点中激子纠缠. 物理学报, doi: 10.7498/aps.54.1178
    [20] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, doi: 10.7498/aps.54.3651
计量
  • 文章访问数:  351
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-12
  • 修回日期:  2025-04-11
  • 上网日期:  2025-04-19

/

返回文章
返回