搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同抗磁行为量子点发光在波导中的手性传输

史书姝 肖姗 许秀来

引用本文:
Citation:

不同抗磁行为量子点发光在波导中的手性传输

史书姝, 肖姗, 许秀来

Chiral optical transport of quantum dots with different diamagnetic behaviors in a waveguide

Shi Shu-Shu, Xiao Shan, Xu Xiu-Lai
PDF
HTML
导出引用
  • 近年来, 为了实现可拓展的集成化量子网络, 各种功能性量子器件的发展需求不断加深. 集成了单量子点的条形波导可以作为单向传输的量子点光源, 在单光子二极管、晶体管和确定性量子门等器件中具有广泛的应用. 本文利用共聚焦显微系统, 在4.2 K低温下, 通过激发波导中心区域的量子点光源, 实现了圆极化光的分离, 并验证了波导中的自旋动量锁定效应. 在实验中实现了具有反常抗磁行为的量子点荧光的手性传输, 拓宽了波导单向传输的波长调控范围. 在保证波导单向传输性的同时, 实现了不同输出光子中心能量的正向、反向偏移. 本文为研究宽波段范围的手性量子器件奠定了基础, 拓展了波导在量子信息领域中的应用.
    In order to realize scalable and integrated quantum photonic networks, various functional devices are highly desired. Strip waveguides with unidirectional transmission function have a wide range of applications in devices such as single-photon diodes, transistors and deterministic quantum gate devices. In this work, the separation of circularly polarized light is achieved by exciting a quantum dot light source in a central region of a waveguide at a low temperature of 4.2 K by using a confocal microscope system. By applying a magnetic field with Faraday configuration (along with the quantum dot growth direction), the spin-momentum locking effect in the waveguide is verified. Both forward shift and reverse shift of different values of output photon energy are demonstrated to show the unidirectional transmission of the waveguide. The chiral transmission of quantum dot with anomalous diamagnetic behavior is achieved in experiment, leading to a wider range of wavelength tuning for chrial transmission in a single waveguide. This paper provides a basis for investigating the chiral quantum devices in a wide wavelength range and expands the applications of waveguides in the field of optical quantum information.
      通信作者: 许秀来, xlxu@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA1400700)、国家自然科学基金(批准号: 62025507, 11934019, 11721404, 11874419)、广东省重点领域研发计划(批准号: 2018B03032900)和中国科学院战略性先导科技专项(批准号: XDB28000000)资助的课题.
      Corresponding author: Xu Xiu-Lai, xlxu@iphy.ac.cn
    • Funds: Project is supported by the National Key R&D Program of China (Grant No. 2021YFA1400700), the National Natural Science Foundation of China (Grant Nos. 62025507, 11934019, 11721404, 11874419), the Guangdong Provincial Key Area R&D Program, China (Grant No. 2018B03032900), and the Strategic Pioneer Science and Technology Special Project of Chinese Academy of Sciences (Grant No. XDB28000000)
    [1]

    Bennett C H, DiVincenzo D P 2000 Nature 404 247Google Scholar

    [2]

    Monroe C 2002 Nature 416 238Google Scholar

    [3]

    Northup T E, Blatt R 2014 Nat. Photonics 8 356Google Scholar

    [4]

    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, L Caspani, Azaña J, Morandotti R 2017 Nature 546 622Google Scholar

    [5]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [6]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67Google Scholar

    [7]

    Mitsch R, Sayrin C, Albrecht B, Schneeweiss P, Rauschenbeutel A 2014 Nat. Commun. 5 5713Google Scholar

    [8]

    Söllner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S, Lodahl P 2015 Nat. Nanotechnol. 10 775Google Scholar

    [9]

    Mehrabad M J, Foster A P, Dost R, Fox A M, Skolnick M S, Wilson L R 2020 Optica 7 1690Google Scholar

    [10]

    Rodríguez-Fortuño F J, Barber-Sanz I, Puerto D, Griol A, Martínez A 2014 ACS Photonics 1 762Google Scholar

    [11]

    Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K, Xiao M 2019 Phys. Rev. A 99 043833Google Scholar

    [12]

    Mahmoodian S, Prindal-Nielsen K, Söllner I, Søren S, Peter L 2017 Opt. Mater. Express 7 43Google Scholar

    [13]

    Coles R, Price D, Dixon J, Royall B, Clarke E, Kok P, Skolnick M, Fox A M, Makhonin M 2016 Nat. Commun. 7 11183Google Scholar

    [14]

    Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar

    [15]

    Xiao S, Wu S Y, Xie X, Yang J N, Wei W Q, Shi S S, Song F L, Sun S B, Dang J C, Yang L L, Wang Y N, Zuo Z C, Wang T, Zhang J J, Xu X L 2021 Appl. Phys. Lett. 118 091106Google Scholar

    [16]

    Xiao S, Wu S Y, Xie X, Yang J N, Wei W Q, Shi S S, Song F L, Dang J C, Sun S B, Yang L L, Wang Y N, Yan S, Zuo Z C, Wang T, Zhang J J, Jin K J, Xu X L 2021 Laser Photonics Rev. 8 2100009Google Scholar

    [17]

    Shen Y, Bradford M, Shen J T 2011 Phys. Rev. Lett. 107 173902Google Scholar

    [18]

    Yan W B, Ni W Y, Zhang J, Zhang F Y, Fan H 2018 Phys. Rev. A 98 043852Google Scholar

    [19]

    Javadi A, Söllner I, Arcari M, Hansen S L, Midolo L, Mahmoodian S, Kiršanskė G, Pregnolato T, Lee E H, Song J D, Stobbe S, Lodahl P 2015 Nat. Commun. 6 8655Google Scholar

    [20]

    Javadi A, Ding D P, Appel M H, Mahmoodian S, Löbl M C, Söllner I, Schott R, Papon C, Pregnolato T, Stobbe S, Midolo L, Schröder T, Wieck A D, Ludwig A, Warburton R, Lodahl P 2018 Nat. Nanotechnol. 13 398Google Scholar

    [21]

    Li T, Miranowicz A, Hu X, Xia K, Nori F 2018 Phys. Rev. A 97 062318Google Scholar

    [22]

    Yan C H, Li Y, Yuan H, Wei L F 2018 Phys. Rev. A 97 023821Google Scholar

    [23]

    Tang J, Xu X L 2018 Chin. Phys. B 27 027804Google Scholar

    [24]

    Kiraz A, Atatüre M, Imamoğlu A 2004 Phys. Rev. A 69 032305Google Scholar

    [25]

    Xu X, Toft I, Phillips R T, Mar J, Hammura K, Williams D A 2007 Appl. Phys. Lett. 90 061103Google Scholar

    [26]

    Sapienza L, Davanço M, Badolato A, Srinivasan K 2015 Nat. Commun. 6 7833Google Scholar

    [27]

    Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026Google Scholar

    [28]

    Imamog A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M, Small A 1999 Phys. Rev. Lett. 83 4204Google Scholar

    [29]

    Gao W B, Fallahi P, Togan E, Miguel-Sánchez J, Imamoglu A 2012 Nature 491 426Google Scholar

    [30]

    Warburton R J 2013 Nat. Mater. 12 483Google Scholar

    [31]

    Qian C J, Wu S Y, Song F L, Peng K, Xie X, Yang J N, Xiao S, Steer M J, Thayne I G, Tang C C, Zuo Z C, Jin K J, Gu C Z, Xu X L 2018 Phys. Rev. Lett. 120 213901Google Scholar

    [32]

    Qian C J, Xie X, Yang J N, Peng K, Wu S Y, Song F L, Sun S B, Dang J C, Yu Y, Steer M J, Thayne I G, Jin K J, Gu C Z, Xu X L 2019 Phys. Rev. Lett. 122 087401Google Scholar

    [33]

    Jun L, Qiong W, Le-Man K, Hao-Sheng Z 2010 Chin. Phys. B 19 030313Google Scholar

    [34]

    Wu S Y, Peng K, Xie X, Yang J N, Xiao S, Song F L, Dang J N, Sun S B, Yang L L, Wang Y N, Shi S S, He J J, Zuo Z C, Xu X L 2020 Phys. Rev. Appl. 14 014049Google Scholar

    [35]

    Cao S, Tang J, Gao Y N, Sun Y, Qiu K S, Zhao Y H, He M, Shi J A, Gu L, Williams D A, W D, Jin K J, Xu X L 2015 Sci. Rep. 5 8041Google Scholar

    [36]

    Fu Y J, Lin S D, Tsai M F, Lin H, Lin C H, Chou H Y, Cheng S J, Chang W H 2010 Phys. Rev. B 81 113307Google Scholar

    [37]

    Lin T C, Li L C, Lin S D, Suen Y W, Lee C P 2011 J. Appl. Phys. 110 013522Google Scholar

    [38]

    Cao S, Tang J, Sun Y, Peng K, GaoY N, Zhao Y H, Qian C J, Sun S B, Ali H, Shao Y T, Wu S Y, Song F L, Williams D A, Sheng W D, Jin K J, Xu X L 2016 Nano Res. 9 306Google Scholar

    [39]

    Bayer M, Walck S N, Reinecke T L, Forchel A 1998 Phys. Rev. B 57 6584Google Scholar

    [40]

    Schulhauser C, Haft D, Warburton R J, Karrai K, Govorov A O, Kalameitsev A V, Chaplik A, Schoenfeld W, Garcia J M, Petroff P M 2002 Phys. Rev. B 66 193303Google Scholar

    [41]

    Glazov M M, Ivchenko E L, Krebs O, Kowalik K, Voisin P 2007 Phys. Rev. B 76 193313Google Scholar

    [42]

    Tsai M F, Lin H, Lin C H, Lin S D, Wang S Y, Lo M C, Cheng S J, Lee M C, Chang W H 2008 Phys. Rev. Lett. 101 267402Google Scholar

  • 图 1  条形波导的结构和量子点的能级示意图 (a)条形波导的SEM图像, 实验中激光激发波导中心区域的量子点, 并从左右两侧光栅耦合器分别收集量子点的荧光; 右边的插图为波导中心区域横截面中量子点分布的示意图; (b)量子点能级的Zeeman分裂示意图, Zeeman分裂导致了两支极化相反的圆偏振光σ和σ+的产生.

    Fig. 1.  Schematic diagram of the structure of the strip waveguide and the energy levels of a quantum dot (QD). (a) SEM image of a strip waveguide. In the experiment, the QDs in the central area of the waveguide were excited by the laser, and the photoluminescence (PL) spetra of the QDs were collected from the left and right grating couplers, respectively. Illustration on the right is the schematic diagram of QDs distributed in the central area of the cross section of the waveguide. (b) Zeeman splitting of the QD energy levels. Zeeman splitting results in two branches of circularly polarized light with opposite polarization σ and σ+.

    图 2  正常抗磁行为量子点的手性传输实验结果 (a) 施加0—8 T的磁场, 从左右两侧光栅耦合器分别收集到的量子点激子态的圆极化荧光光谱; (b) 随磁场变化的荧光光谱的峰值; (c) 激子态的Zeeman分裂随磁场的变化和对应的g因子; (d)激子态劈裂峰的能量平均值随磁场的变化和对应的抗磁系数.

    Fig. 2.  Experimental results of chiral transport of QDs with normal diamagnetic behavior: (a) Circularly polarized PL spectra of excitonic states of QDs collected from the left and right grating couplers by applying a magnetic field from 0 T to 8 T, respectively; (b) PL peak energies as a function of an applied magnetic field; (c) Zeeman splitting of the exciton state with a magnetic field and the corresponding g-factor; (d) average energy of the splitting peaks with a magnetic field and the corresponding diamagnetic coefficient.

    图 3  反常磁行为量子点的手性传输实验结果 (a) 施加0—8 T的磁场, 从左右两侧光栅耦合器分别收集到的量子点激子态的圆极化荧光光谱; (b) 随磁场变化的荧光光谱的峰值; (c) 激子态的Zeeman分裂随磁场的变化和对应的g因子; (d)激子态劈裂峰的能量平均值随磁场的变化和对应的抗磁系数.

    Fig. 3.  Experimental results of chiral transport of QDs with anomalous diamagnetic behavior: (a) Circularly polarized PL spectra of excitonic states of QDs collected from the left and right grating couplers by applying a magnetic field from 0 T to 8 T, respectively; (b) PL peak energies as a function of an applied magnetic field; (c) Zeeman splitting of the exciton state with a magnetic field and the corresponding g-factor; (d) average energy of the splitting peaks with a magnetic field and the corresponding diamagnetic coefficient.

    图 4  不同量子点的手性对比度 (a)正常抗磁行为量子点的手性对比度随磁场的变化; (b)反常抗磁行为量子点的手性对比度随磁场的变化.

    Fig. 4.  Chiral contrast for different QDs: (a) Variation of chiral contrast with a magnetic field for the QD with a normal diamagnetic behavior; (b) variation of chiral contrast with a magnetic field for the QD with an anomalous diamagnetic behavior.

  • [1]

    Bennett C H, DiVincenzo D P 2000 Nature 404 247Google Scholar

    [2]

    Monroe C 2002 Nature 416 238Google Scholar

    [3]

    Northup T E, Blatt R 2014 Nat. Photonics 8 356Google Scholar

    [4]

    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, L Caspani, Azaña J, Morandotti R 2017 Nature 546 622Google Scholar

    [5]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [6]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67Google Scholar

    [7]

    Mitsch R, Sayrin C, Albrecht B, Schneeweiss P, Rauschenbeutel A 2014 Nat. Commun. 5 5713Google Scholar

    [8]

    Söllner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S, Lodahl P 2015 Nat. Nanotechnol. 10 775Google Scholar

    [9]

    Mehrabad M J, Foster A P, Dost R, Fox A M, Skolnick M S, Wilson L R 2020 Optica 7 1690Google Scholar

    [10]

    Rodríguez-Fortuño F J, Barber-Sanz I, Puerto D, Griol A, Martínez A 2014 ACS Photonics 1 762Google Scholar

    [11]

    Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K, Xiao M 2019 Phys. Rev. A 99 043833Google Scholar

    [12]

    Mahmoodian S, Prindal-Nielsen K, Söllner I, Søren S, Peter L 2017 Opt. Mater. Express 7 43Google Scholar

    [13]

    Coles R, Price D, Dixon J, Royall B, Clarke E, Kok P, Skolnick M, Fox A M, Makhonin M 2016 Nat. Commun. 7 11183Google Scholar

    [14]

    Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar

    [15]

    Xiao S, Wu S Y, Xie X, Yang J N, Wei W Q, Shi S S, Song F L, Sun S B, Dang J C, Yang L L, Wang Y N, Zuo Z C, Wang T, Zhang J J, Xu X L 2021 Appl. Phys. Lett. 118 091106Google Scholar

    [16]

    Xiao S, Wu S Y, Xie X, Yang J N, Wei W Q, Shi S S, Song F L, Dang J C, Sun S B, Yang L L, Wang Y N, Yan S, Zuo Z C, Wang T, Zhang J J, Jin K J, Xu X L 2021 Laser Photonics Rev. 8 2100009Google Scholar

    [17]

    Shen Y, Bradford M, Shen J T 2011 Phys. Rev. Lett. 107 173902Google Scholar

    [18]

    Yan W B, Ni W Y, Zhang J, Zhang F Y, Fan H 2018 Phys. Rev. A 98 043852Google Scholar

    [19]

    Javadi A, Söllner I, Arcari M, Hansen S L, Midolo L, Mahmoodian S, Kiršanskė G, Pregnolato T, Lee E H, Song J D, Stobbe S, Lodahl P 2015 Nat. Commun. 6 8655Google Scholar

    [20]

    Javadi A, Ding D P, Appel M H, Mahmoodian S, Löbl M C, Söllner I, Schott R, Papon C, Pregnolato T, Stobbe S, Midolo L, Schröder T, Wieck A D, Ludwig A, Warburton R, Lodahl P 2018 Nat. Nanotechnol. 13 398Google Scholar

    [21]

    Li T, Miranowicz A, Hu X, Xia K, Nori F 2018 Phys. Rev. A 97 062318Google Scholar

    [22]

    Yan C H, Li Y, Yuan H, Wei L F 2018 Phys. Rev. A 97 023821Google Scholar

    [23]

    Tang J, Xu X L 2018 Chin. Phys. B 27 027804Google Scholar

    [24]

    Kiraz A, Atatüre M, Imamoğlu A 2004 Phys. Rev. A 69 032305Google Scholar

    [25]

    Xu X, Toft I, Phillips R T, Mar J, Hammura K, Williams D A 2007 Appl. Phys. Lett. 90 061103Google Scholar

    [26]

    Sapienza L, Davanço M, Badolato A, Srinivasan K 2015 Nat. Commun. 6 7833Google Scholar

    [27]

    Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026Google Scholar

    [28]

    Imamog A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M, Small A 1999 Phys. Rev. Lett. 83 4204Google Scholar

    [29]

    Gao W B, Fallahi P, Togan E, Miguel-Sánchez J, Imamoglu A 2012 Nature 491 426Google Scholar

    [30]

    Warburton R J 2013 Nat. Mater. 12 483Google Scholar

    [31]

    Qian C J, Wu S Y, Song F L, Peng K, Xie X, Yang J N, Xiao S, Steer M J, Thayne I G, Tang C C, Zuo Z C, Jin K J, Gu C Z, Xu X L 2018 Phys. Rev. Lett. 120 213901Google Scholar

    [32]

    Qian C J, Xie X, Yang J N, Peng K, Wu S Y, Song F L, Sun S B, Dang J C, Yu Y, Steer M J, Thayne I G, Jin K J, Gu C Z, Xu X L 2019 Phys. Rev. Lett. 122 087401Google Scholar

    [33]

    Jun L, Qiong W, Le-Man K, Hao-Sheng Z 2010 Chin. Phys. B 19 030313Google Scholar

    [34]

    Wu S Y, Peng K, Xie X, Yang J N, Xiao S, Song F L, Dang J N, Sun S B, Yang L L, Wang Y N, Shi S S, He J J, Zuo Z C, Xu X L 2020 Phys. Rev. Appl. 14 014049Google Scholar

    [35]

    Cao S, Tang J, Gao Y N, Sun Y, Qiu K S, Zhao Y H, He M, Shi J A, Gu L, Williams D A, W D, Jin K J, Xu X L 2015 Sci. Rep. 5 8041Google Scholar

    [36]

    Fu Y J, Lin S D, Tsai M F, Lin H, Lin C H, Chou H Y, Cheng S J, Chang W H 2010 Phys. Rev. B 81 113307Google Scholar

    [37]

    Lin T C, Li L C, Lin S D, Suen Y W, Lee C P 2011 J. Appl. Phys. 110 013522Google Scholar

    [38]

    Cao S, Tang J, Sun Y, Peng K, GaoY N, Zhao Y H, Qian C J, Sun S B, Ali H, Shao Y T, Wu S Y, Song F L, Williams D A, Sheng W D, Jin K J, Xu X L 2016 Nano Res. 9 306Google Scholar

    [39]

    Bayer M, Walck S N, Reinecke T L, Forchel A 1998 Phys. Rev. B 57 6584Google Scholar

    [40]

    Schulhauser C, Haft D, Warburton R J, Karrai K, Govorov A O, Kalameitsev A V, Chaplik A, Schoenfeld W, Garcia J M, Petroff P M 2002 Phys. Rev. B 66 193303Google Scholar

    [41]

    Glazov M M, Ivchenko E L, Krebs O, Kowalik K, Voisin P 2007 Phys. Rev. B 76 193313Google Scholar

    [42]

    Tsai M F, Lin H, Lin C H, Lin S D, Wang S Y, Lo M C, Cheng S J, Lee M C, Chang W H 2008 Phys. Rev. Lett. 101 267402Google Scholar

  • [1] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [2] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论. 物理学报, 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [3] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [4] 周萧溪, 胡传灯, 陆伟新, 赖耘, 侯波. 外尔超构材料里频率分离外尔点的数值设计. 物理学报, 2020, 69(15): 154204. doi: 10.7498/aps.69.20200195
    [5] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [6] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [7] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [8] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [9] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [10] 额尔敦朝鲁, 白旭芳, 韩超. 抛物量子点中强耦合磁双极化子内部激发态性质. 物理学报, 2014, 63(2): 027501. doi: 10.7498/aps.63.027501
    [11] 曹永军, 江鑫. 二维磁振子晶体中线缺陷模的性质及其应用. 物理学报, 2013, 62(8): 087501. doi: 10.7498/aps.62.087501
    [12] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [13] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [14] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [15] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [16] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [17] 盛峥, 黄思训, 曾国栋. 利用Bayesian-MCMC方法从雷达回波反演海洋波导. 物理学报, 2009, 58(6): 4335-4341. doi: 10.7498/aps.58.4335
    [18] 盛峥, 黄思训. 雷达回波资料反演海洋波导的算法和抗噪能力研究. 物理学报, 2009, 58(6): 4328-4334. doi: 10.7498/aps.58.4328
    [19] 殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥. 非截面二维光子晶体排列矩形波导的全模式分析. 物理学报, 2007, 56(3): 1590-1597. doi: 10.7498/aps.56.1590
    [20] 张绘蓝, 张光勇, 王 程, 刘时雄, 刘劲松. 全息明孤子的波导特性. 物理学报, 2007, 56(1): 236-239. doi: 10.7498/aps.56.236
计量
  • 文章访问数:  4405
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-07
  • 修回日期:  2021-11-09
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回