-
近年来, 为了实现可拓展的集成化量子网络, 各种功能性量子器件的发展需求不断加深. 集成了单量子点的条形波导可以作为单向传输的量子点光源, 在单光子二极管、晶体管和确定性量子门等器件中具有广泛的应用. 本文利用共聚焦显微系统, 在4.2 K低温下, 通过激发波导中心区域的量子点光源, 实现了圆极化光的分离, 并验证了波导中的自旋动量锁定效应. 在实验中实现了具有反常抗磁行为的量子点荧光的手性传输, 拓宽了波导单向传输的波长调控范围. 在保证波导单向传输性的同时, 实现了不同输出光子中心能量的正向、反向偏移. 本文为研究宽波段范围的手性量子器件奠定了基础, 拓展了波导在量子信息领域中的应用.In order to realize scalable and integrated quantum photonic networks, various functional devices are highly desired. Strip waveguides with unidirectional transmission function have a wide range of applications in devices such as single-photon diodes, transistors and deterministic quantum gate devices. In this work, the separation of circularly polarized light is achieved by exciting a quantum dot light source in a central region of a waveguide at a low temperature of 4.2 K by using a confocal microscope system. By applying a magnetic field with Faraday configuration (along with the quantum dot growth direction), the spin-momentum locking effect in the waveguide is verified. Both forward shift and reverse shift of different values of output photon energy are demonstrated to show the unidirectional transmission of the waveguide. The chiral transmission of quantum dot with anomalous diamagnetic behavior is achieved in experiment, leading to a wider range of wavelength tuning for chrial transmission in a single waveguide. This paper provides a basis for investigating the chiral quantum devices in a wide wavelength range and expands the applications of waveguides in the field of optical quantum information.
-
Keywords:
- diamagnetic /
- quantum dots /
- waveguide /
- chiral
[1] Bennett C H, DiVincenzo D P 2000 Nature 404 247Google Scholar
[2] Monroe C 2002 Nature 416 238Google Scholar
[3] Northup T E, Blatt R 2014 Nat. Photonics 8 356Google Scholar
[4] Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, L Caspani, Azaña J, Morandotti R 2017 Nature 546 622Google Scholar
[5] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar
[6] Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67Google Scholar
[7] Mitsch R, Sayrin C, Albrecht B, Schneeweiss P, Rauschenbeutel A 2014 Nat. Commun. 5 5713Google Scholar
[8] Söllner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S, Lodahl P 2015 Nat. Nanotechnol. 10 775Google Scholar
[9] Mehrabad M J, Foster A P, Dost R, Fox A M, Skolnick M S, Wilson L R 2020 Optica 7 1690Google Scholar
[10] Rodríguez-Fortuño F J, Barber-Sanz I, Puerto D, Griol A, Martínez A 2014 ACS Photonics 1 762Google Scholar
[11] Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K, Xiao M 2019 Phys. Rev. A 99 043833Google Scholar
[12] Mahmoodian S, Prindal-Nielsen K, Söllner I, Søren S, Peter L 2017 Opt. Mater. Express 7 43Google Scholar
[13] Coles R, Price D, Dixon J, Royall B, Clarke E, Kok P, Skolnick M, Fox A M, Makhonin M 2016 Nat. Commun. 7 11183Google Scholar
[14] Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar
[15] Xiao S, Wu S Y, Xie X, Yang J N, Wei W Q, Shi S S, Song F L, Sun S B, Dang J C, Yang L L, Wang Y N, Zuo Z C, Wang T, Zhang J J, Xu X L 2021 Appl. Phys. Lett. 118 091106Google Scholar
[16] Xiao S, Wu S Y, Xie X, Yang J N, Wei W Q, Shi S S, Song F L, Dang J C, Sun S B, Yang L L, Wang Y N, Yan S, Zuo Z C, Wang T, Zhang J J, Jin K J, Xu X L 2021 Laser Photonics Rev. 8 2100009Google Scholar
[17] Shen Y, Bradford M, Shen J T 2011 Phys. Rev. Lett. 107 173902Google Scholar
[18] Yan W B, Ni W Y, Zhang J, Zhang F Y, Fan H 2018 Phys. Rev. A 98 043852Google Scholar
[19] Javadi A, Söllner I, Arcari M, Hansen S L, Midolo L, Mahmoodian S, Kiršanskė G, Pregnolato T, Lee E H, Song J D, Stobbe S, Lodahl P 2015 Nat. Commun. 6 8655Google Scholar
[20] Javadi A, Ding D P, Appel M H, Mahmoodian S, Löbl M C, Söllner I, Schott R, Papon C, Pregnolato T, Stobbe S, Midolo L, Schröder T, Wieck A D, Ludwig A, Warburton R, Lodahl P 2018 Nat. Nanotechnol. 13 398Google Scholar
[21] Li T, Miranowicz A, Hu X, Xia K, Nori F 2018 Phys. Rev. A 97 062318Google Scholar
[22] Yan C H, Li Y, Yuan H, Wei L F 2018 Phys. Rev. A 97 023821Google Scholar
[23] Tang J, Xu X L 2018 Chin. Phys. B 27 027804Google Scholar
[24] Kiraz A, Atatüre M, Imamoğlu A 2004 Phys. Rev. A 69 032305Google Scholar
[25] Xu X, Toft I, Phillips R T, Mar J, Hammura K, Williams D A 2007 Appl. Phys. Lett. 90 061103Google Scholar
[26] Sapienza L, Davanço M, Badolato A, Srinivasan K 2015 Nat. Commun. 6 7833Google Scholar
[27] Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026Google Scholar
[28] Imamog A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M, Small A 1999 Phys. Rev. Lett. 83 4204Google Scholar
[29] Gao W B, Fallahi P, Togan E, Miguel-Sánchez J, Imamoglu A 2012 Nature 491 426Google Scholar
[30] Warburton R J 2013 Nat. Mater. 12 483Google Scholar
[31] Qian C J, Wu S Y, Song F L, Peng K, Xie X, Yang J N, Xiao S, Steer M J, Thayne I G, Tang C C, Zuo Z C, Jin K J, Gu C Z, Xu X L 2018 Phys. Rev. Lett. 120 213901Google Scholar
[32] Qian C J, Xie X, Yang J N, Peng K, Wu S Y, Song F L, Sun S B, Dang J C, Yu Y, Steer M J, Thayne I G, Jin K J, Gu C Z, Xu X L 2019 Phys. Rev. Lett. 122 087401Google Scholar
[33] Jun L, Qiong W, Le-Man K, Hao-Sheng Z 2010 Chin. Phys. B 19 030313Google Scholar
[34] Wu S Y, Peng K, Xie X, Yang J N, Xiao S, Song F L, Dang J N, Sun S B, Yang L L, Wang Y N, Shi S S, He J J, Zuo Z C, Xu X L 2020 Phys. Rev. Appl. 14 014049Google Scholar
[35] Cao S, Tang J, Gao Y N, Sun Y, Qiu K S, Zhao Y H, He M, Shi J A, Gu L, Williams D A, W D, Jin K J, Xu X L 2015 Sci. Rep. 5 8041Google Scholar
[36] Fu Y J, Lin S D, Tsai M F, Lin H, Lin C H, Chou H Y, Cheng S J, Chang W H 2010 Phys. Rev. B 81 113307Google Scholar
[37] Lin T C, Li L C, Lin S D, Suen Y W, Lee C P 2011 J. Appl. Phys. 110 013522Google Scholar
[38] Cao S, Tang J, Sun Y, Peng K, GaoY N, Zhao Y H, Qian C J, Sun S B, Ali H, Shao Y T, Wu S Y, Song F L, Williams D A, Sheng W D, Jin K J, Xu X L 2016 Nano Res. 9 306Google Scholar
[39] Bayer M, Walck S N, Reinecke T L, Forchel A 1998 Phys. Rev. B 57 6584Google Scholar
[40] Schulhauser C, Haft D, Warburton R J, Karrai K, Govorov A O, Kalameitsev A V, Chaplik A, Schoenfeld W, Garcia J M, Petroff P M 2002 Phys. Rev. B 66 193303Google Scholar
[41] Glazov M M, Ivchenko E L, Krebs O, Kowalik K, Voisin P 2007 Phys. Rev. B 76 193313Google Scholar
[42] Tsai M F, Lin H, Lin C H, Lin S D, Wang S Y, Lo M C, Cheng S J, Lee M C, Chang W H 2008 Phys. Rev. Lett. 101 267402Google Scholar
-
图 1 条形波导的结构和量子点的能级示意图 (a)条形波导的SEM图像, 实验中激光激发波导中心区域的量子点, 并从左右两侧光栅耦合器分别收集量子点的荧光; 右边的插图为波导中心区域横截面中量子点分布的示意图; (b)量子点能级的Zeeman分裂示意图, Zeeman分裂导致了两支极化相反的圆偏振光σ-和σ+的产生.
Fig. 1. Schematic diagram of the structure of the strip waveguide and the energy levels of a quantum dot (QD). (a) SEM image of a strip waveguide. In the experiment, the QDs in the central area of the waveguide were excited by the laser, and the photoluminescence (PL) spetra of the QDs were collected from the left and right grating couplers, respectively. Illustration on the right is the schematic diagram of QDs distributed in the central area of the cross section of the waveguide. (b) Zeeman splitting of the QD energy levels. Zeeman splitting results in two branches of circularly polarized light with opposite polarization σ- and σ+.
图 2 正常抗磁行为量子点的手性传输实验结果 (a) 施加0—8 T的磁场, 从左右两侧光栅耦合器分别收集到的量子点激子态的圆极化荧光光谱; (b) 随磁场变化的荧光光谱的峰值; (c) 激子态的Zeeman分裂随磁场的变化和对应的g因子; (d)激子态劈裂峰的能量平均值随磁场的变化和对应的抗磁系数.
Fig. 2. Experimental results of chiral transport of QDs with normal diamagnetic behavior: (a) Circularly polarized PL spectra of excitonic states of QDs collected from the left and right grating couplers by applying a magnetic field from 0 T to 8 T, respectively; (b) PL peak energies as a function of an applied magnetic field; (c) Zeeman splitting of the exciton state with a magnetic field and the corresponding g-factor; (d) average energy of the splitting peaks with a magnetic field and the corresponding diamagnetic coefficient.
图 3 反常磁行为量子点的手性传输实验结果 (a) 施加0—8 T的磁场, 从左右两侧光栅耦合器分别收集到的量子点激子态的圆极化荧光光谱; (b) 随磁场变化的荧光光谱的峰值; (c) 激子态的Zeeman分裂随磁场的变化和对应的g因子; (d)激子态劈裂峰的能量平均值随磁场的变化和对应的抗磁系数.
Fig. 3. Experimental results of chiral transport of QDs with anomalous diamagnetic behavior: (a) Circularly polarized PL spectra of excitonic states of QDs collected from the left and right grating couplers by applying a magnetic field from 0 T to 8 T, respectively; (b) PL peak energies as a function of an applied magnetic field; (c) Zeeman splitting of the exciton state with a magnetic field and the corresponding g-factor; (d) average energy of the splitting peaks with a magnetic field and the corresponding diamagnetic coefficient.
图 4 不同量子点的手性对比度 (a)正常抗磁行为量子点的手性对比度随磁场的变化; (b)反常抗磁行为量子点的手性对比度随磁场的变化.
Fig. 4. Chiral contrast for different QDs: (a) Variation of chiral contrast with a magnetic field for the QD with a normal diamagnetic behavior; (b) variation of chiral contrast with a magnetic field for the QD with an anomalous diamagnetic behavior.
-
[1] Bennett C H, DiVincenzo D P 2000 Nature 404 247Google Scholar
[2] Monroe C 2002 Nature 416 238Google Scholar
[3] Northup T E, Blatt R 2014 Nat. Photonics 8 356Google Scholar
[4] Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, L Caspani, Azaña J, Morandotti R 2017 Nature 546 622Google Scholar
[5] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar
[6] Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67Google Scholar
[7] Mitsch R, Sayrin C, Albrecht B, Schneeweiss P, Rauschenbeutel A 2014 Nat. Commun. 5 5713Google Scholar
[8] Söllner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S, Lodahl P 2015 Nat. Nanotechnol. 10 775Google Scholar
[9] Mehrabad M J, Foster A P, Dost R, Fox A M, Skolnick M S, Wilson L R 2020 Optica 7 1690Google Scholar
[10] Rodríguez-Fortuño F J, Barber-Sanz I, Puerto D, Griol A, Martínez A 2014 ACS Photonics 1 762Google Scholar
[11] Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K, Xiao M 2019 Phys. Rev. A 99 043833Google Scholar
[12] Mahmoodian S, Prindal-Nielsen K, Söllner I, Søren S, Peter L 2017 Opt. Mater. Express 7 43Google Scholar
[13] Coles R, Price D, Dixon J, Royall B, Clarke E, Kok P, Skolnick M, Fox A M, Makhonin M 2016 Nat. Commun. 7 11183Google Scholar
[14] Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar
[15] Xiao S, Wu S Y, Xie X, Yang J N, Wei W Q, Shi S S, Song F L, Sun S B, Dang J C, Yang L L, Wang Y N, Zuo Z C, Wang T, Zhang J J, Xu X L 2021 Appl. Phys. Lett. 118 091106Google Scholar
[16] Xiao S, Wu S Y, Xie X, Yang J N, Wei W Q, Shi S S, Song F L, Dang J C, Sun S B, Yang L L, Wang Y N, Yan S, Zuo Z C, Wang T, Zhang J J, Jin K J, Xu X L 2021 Laser Photonics Rev. 8 2100009Google Scholar
[17] Shen Y, Bradford M, Shen J T 2011 Phys. Rev. Lett. 107 173902Google Scholar
[18] Yan W B, Ni W Y, Zhang J, Zhang F Y, Fan H 2018 Phys. Rev. A 98 043852Google Scholar
[19] Javadi A, Söllner I, Arcari M, Hansen S L, Midolo L, Mahmoodian S, Kiršanskė G, Pregnolato T, Lee E H, Song J D, Stobbe S, Lodahl P 2015 Nat. Commun. 6 8655Google Scholar
[20] Javadi A, Ding D P, Appel M H, Mahmoodian S, Löbl M C, Söllner I, Schott R, Papon C, Pregnolato T, Stobbe S, Midolo L, Schröder T, Wieck A D, Ludwig A, Warburton R, Lodahl P 2018 Nat. Nanotechnol. 13 398Google Scholar
[21] Li T, Miranowicz A, Hu X, Xia K, Nori F 2018 Phys. Rev. A 97 062318Google Scholar
[22] Yan C H, Li Y, Yuan H, Wei L F 2018 Phys. Rev. A 97 023821Google Scholar
[23] Tang J, Xu X L 2018 Chin. Phys. B 27 027804Google Scholar
[24] Kiraz A, Atatüre M, Imamoğlu A 2004 Phys. Rev. A 69 032305Google Scholar
[25] Xu X, Toft I, Phillips R T, Mar J, Hammura K, Williams D A 2007 Appl. Phys. Lett. 90 061103Google Scholar
[26] Sapienza L, Davanço M, Badolato A, Srinivasan K 2015 Nat. Commun. 6 7833Google Scholar
[27] Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026Google Scholar
[28] Imamog A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M, Small A 1999 Phys. Rev. Lett. 83 4204Google Scholar
[29] Gao W B, Fallahi P, Togan E, Miguel-Sánchez J, Imamoglu A 2012 Nature 491 426Google Scholar
[30] Warburton R J 2013 Nat. Mater. 12 483Google Scholar
[31] Qian C J, Wu S Y, Song F L, Peng K, Xie X, Yang J N, Xiao S, Steer M J, Thayne I G, Tang C C, Zuo Z C, Jin K J, Gu C Z, Xu X L 2018 Phys. Rev. Lett. 120 213901Google Scholar
[32] Qian C J, Xie X, Yang J N, Peng K, Wu S Y, Song F L, Sun S B, Dang J C, Yu Y, Steer M J, Thayne I G, Jin K J, Gu C Z, Xu X L 2019 Phys. Rev. Lett. 122 087401Google Scholar
[33] Jun L, Qiong W, Le-Man K, Hao-Sheng Z 2010 Chin. Phys. B 19 030313Google Scholar
[34] Wu S Y, Peng K, Xie X, Yang J N, Xiao S, Song F L, Dang J N, Sun S B, Yang L L, Wang Y N, Shi S S, He J J, Zuo Z C, Xu X L 2020 Phys. Rev. Appl. 14 014049Google Scholar
[35] Cao S, Tang J, Gao Y N, Sun Y, Qiu K S, Zhao Y H, He M, Shi J A, Gu L, Williams D A, W D, Jin K J, Xu X L 2015 Sci. Rep. 5 8041Google Scholar
[36] Fu Y J, Lin S D, Tsai M F, Lin H, Lin C H, Chou H Y, Cheng S J, Chang W H 2010 Phys. Rev. B 81 113307Google Scholar
[37] Lin T C, Li L C, Lin S D, Suen Y W, Lee C P 2011 J. Appl. Phys. 110 013522Google Scholar
[38] Cao S, Tang J, Sun Y, Peng K, GaoY N, Zhao Y H, Qian C J, Sun S B, Ali H, Shao Y T, Wu S Y, Song F L, Williams D A, Sheng W D, Jin K J, Xu X L 2016 Nano Res. 9 306Google Scholar
[39] Bayer M, Walck S N, Reinecke T L, Forchel A 1998 Phys. Rev. B 57 6584Google Scholar
[40] Schulhauser C, Haft D, Warburton R J, Karrai K, Govorov A O, Kalameitsev A V, Chaplik A, Schoenfeld W, Garcia J M, Petroff P M 2002 Phys. Rev. B 66 193303Google Scholar
[41] Glazov M M, Ivchenko E L, Krebs O, Kowalik K, Voisin P 2007 Phys. Rev. B 76 193313Google Scholar
[42] Tsai M F, Lin H, Lin C H, Lin S D, Wang S Y, Lo M C, Cheng S J, Lee M C, Chang W H 2008 Phys. Rev. Lett. 101 267402Google Scholar
计量
- 文章访问数: 4387
- PDF下载量: 101
- 被引次数: 0