-
手性结构的圆二色吸收已经被广泛应用于分析化学、工业制药、生物监测等领域. 然而天然手性结构与光的相互作用很弱. 等离激元光学纳米结构能大幅度增强光-物作用的能力. 在制备可见-近红外手性等离激元超吸收结构的过程中, 通常存在吸收率与样品制备面积的折中, 即可大面积制备结构的圆二色性较小. 为提高可大面积制备手性等离激元吸收器的圆二色性, 本文设计了蜂窝状排列的椭圆孔洞吸收器, 并研究了其吸收、圆二色性和光学g因子. 通过合理的设计, 数值计算结果显示, 在手性光的激发下其圆二色值可达约0.8, 对应光学g因子可达约1.7. 巨大的圆二色性来源于倾斜椭圆结构对结构对称性的破坏, 且倾斜角对圆二色性的影响很大. 本结构可利用纳米球光刻法制备, 对制备大规模手性等离激元吸收器具有一定的指导意义.The circular dichroism of chiral structure has been widely used in analytical chemistry, industrial pharmacy, biological monitoring, etc. However, the light-matter interaction between natural chiral structures is extremely weak. Plasmonic nanostructures can significantly enhance light-matter interaction. During the fabrication of the visible-to-near-infrared chiral plasmonic metamaterial absorbers, there exists usually a trade-off between the absorption and the sample area, that is, the circular dichroism signal of the large-area structure is small. Besides, the preparation of chiral absorbers working in the visible and near-infrared region usually requires expensive etching or lithography equipment, such as reactive ion etching or electron beam lithography. Therefore, preparing cost-effective chiral absorbers with large circular dichroism is attractive for practical applications. In order to improve the circular dichroism of large-scale chiral absorbers, a honeycomb-shaped elliptical hole absorber is proposed in this paper, and its absorption, circular dichroism, and optical g-factor are studied. By reasonable design, the numerical calculation results show that the circular dichroism can reach about 0.8 under the excitation of chiral polarized light, and the corresponding optical g-factor can reach about 1.7 at 920 nm. Compared with the reported absorber, our chiral absorber has a maximum g-factor value. The giant circular dichroism originates from the symmetry breaking of the structure by tilting ellipse structures, and the tilt angle has a significant influence on circular dichroism. To further explain the absorption difference, the electric profile, surface current distribution, and absorption loss of the chiral absorption at resonant wavelength are analyzed. Finally, we point out that the structure can be prepared by existing technologies, such as nanosphere photolithography: first, a layer of polystyrene (PS) balls is formed by self-organization, which can control the period of the structure; then the size of the PS balls is reduced to a suitable size and spacing by the reactive ion etching; finally, a metallic layer is deposited by oblique angle evaporation. This work provides useful guidance for fabricating the large-scale chiral plasmonic absorbers.
-
Keywords:
- optical absorption /
- circular dichroism /
- plasmonics /
- chiral
[1] Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E, Hogele A, Simmel F C, Govorov A O, Liedl T 2012 Nature 483 7389
[2] Hentschel M, Schäferling M, Duan X, Giessen H, Liu N 2017 Sci. Adv. 3 5
[3] Yu P, BesteiroL V, HuangY, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z 2019 Adv. Opt. Mater. 7 3
[4] Yu P, Besteiro L V, W Jiang, Huang Y, Wang Y, Govorov A O, Wang Z 2018 Opt. Express 26 16
[5] Zou J, Yu P, Wang W, Tong X, Chang L, Wu C, Du W, Ji H, Huang Y, Niu X, Govorov A O, Wu J, Wang Z 2019 J. Phys. D: Appl. Phys. 53 105106
[6] Li W, Coppens J, Besteiro L V, Wang W, Govorov A O, Valentine J 2015 Nat. Commun. 6 8379Google Scholar
[7] Kong X T, Khorashad K, Wang Z, Govorov A O 2018 Nano Lett. 18 3
[8] Liu T, Besteiro V, Liedl T, Correa-Duarte M A, Wang Z, Govorov A O 2019 Nano Lett. 19 2
[9] Wang W, Besteiro L V, Liu T, Wu C, Sun J, Yu P, Chang L, Wang Z, Govorov A O 2019 ACS Photonics 6 12Google Scholar
[10] Wu X, Xu L, Liu L, Ma W, Yin H, Kuang H, Wang L, Xu C, Kotov N A 2013 J. Am. Chem. Soc. 135 49
[11] Ouyang L, Rosenmann D, Czaplewski D A, Gao J, Yang X 2020 Nanotechnology 31 29
[12] He G, Shang X, Yue J, Zhai X, Xia S, Li H, Wang L 2020 J. Opt. Soc. Am. B 37 4Google Scholar
[13] Khorashad K L, Besteiro L V, Correa-Duarte M A, Burger S, Wang Z M, Govorov A O 2020 J. Am. Chem. Soc. 142 9
[14] Frank B, Yin X, Schäferling M, Zhao J, Hein S M, Braun P V, Giessen H 2013 ACS Nano 7 7
[15] Dietrich K, Lehr D, Helgert C, Tünnermann A, Kley E B 2012 Adv. Mater. 24 OP321Google Scholar
[16] Decker M, Ruther M, Kriegler C E, Zhou J, Soukoulis C M, Linden S, Wegener M 2009 Opt. Lett. 34 16Google Scholar
[17] 陈珊珊, 刘幸, 刘之光, 李家方 2019 物理学报 68 248101Google Scholar
Chen S S, Liu X, Liu Z G, Li J F 2019 Acta Phys. Sin. 68 248101Google Scholar
[18] Huang Y, Yao Z, Hu F, Liu C, Yu L, Jin Y, Xu X 2017 Carbon 119 305Google Scholar
[19] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M 2010 Nat. Nanotechnol. 5 11Google Scholar
[20] Petronijević E, Leahu G, Voti R L, Belardini A, Scian C, Michieli N, Cesca T, Matte G, Sibilia C 2019 Appl. Phys. Lett. 114 053101Google Scholar
[21] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar
[22] Tang B, Li Z, Palacios E, Liu Z, Butun S, Aydin K 2017 IEEE Photonics Technology Letters 29 3Google Scholar
[23] Ouyang L, Wang W, Rosenmann D, Czaplewski D A, Gao J, Yang X 2018 Opt. Express 26 24
[24] Xiao W, Shi X, Zhang Y, Peng W, Zeng Y 2019 Phys. Scr. 94 8
[25] Rongkuo Z, Thomas K, Costas S 2010 Opt. Express 18 14
-
图 7 不同偏振的入射光照射下, 共振波长在920 nm附近的 (a)和 (b) 归一化电场E/E0分布图, 未归一化前, LCP和RCP光照射下E/E0最大值分别为11和36; (c) 和 (d) 表面电流分布图; (e) 和 (f) 吸收损耗(吸收密度)图. 图(a), (c)和 (e) 为LCP入射; 图(b), (d) 和 (f) 为RCP入射
Fig. 7. (a), (b) Normalized electric field E/E0; (c), (d) Surface current distribution; (e), (f) Absorption loss (absorption density) at the wavelength of 920 nm with different circularly polarized illuminations. (a), (c) and (e) For LCP; (b), (d) and (f) for RCP; the non-normalized maximum values of E/E0 under LCP and RCP light irradiation are 11 and 36, respectively.
表 1 可见和近红外波段的手性超材料吸收器与本文吸收器的对比
Table 1. Selected publications on chiral metamaterial absorbers at the visible and near-infrared region.
-
[1] Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E, Hogele A, Simmel F C, Govorov A O, Liedl T 2012 Nature 483 7389
[2] Hentschel M, Schäferling M, Duan X, Giessen H, Liu N 2017 Sci. Adv. 3 5
[3] Yu P, BesteiroL V, HuangY, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z 2019 Adv. Opt. Mater. 7 3
[4] Yu P, Besteiro L V, W Jiang, Huang Y, Wang Y, Govorov A O, Wang Z 2018 Opt. Express 26 16
[5] Zou J, Yu P, Wang W, Tong X, Chang L, Wu C, Du W, Ji H, Huang Y, Niu X, Govorov A O, Wu J, Wang Z 2019 J. Phys. D: Appl. Phys. 53 105106
[6] Li W, Coppens J, Besteiro L V, Wang W, Govorov A O, Valentine J 2015 Nat. Commun. 6 8379Google Scholar
[7] Kong X T, Khorashad K, Wang Z, Govorov A O 2018 Nano Lett. 18 3
[8] Liu T, Besteiro V, Liedl T, Correa-Duarte M A, Wang Z, Govorov A O 2019 Nano Lett. 19 2
[9] Wang W, Besteiro L V, Liu T, Wu C, Sun J, Yu P, Chang L, Wang Z, Govorov A O 2019 ACS Photonics 6 12Google Scholar
[10] Wu X, Xu L, Liu L, Ma W, Yin H, Kuang H, Wang L, Xu C, Kotov N A 2013 J. Am. Chem. Soc. 135 49
[11] Ouyang L, Rosenmann D, Czaplewski D A, Gao J, Yang X 2020 Nanotechnology 31 29
[12] He G, Shang X, Yue J, Zhai X, Xia S, Li H, Wang L 2020 J. Opt. Soc. Am. B 37 4Google Scholar
[13] Khorashad K L, Besteiro L V, Correa-Duarte M A, Burger S, Wang Z M, Govorov A O 2020 J. Am. Chem. Soc. 142 9
[14] Frank B, Yin X, Schäferling M, Zhao J, Hein S M, Braun P V, Giessen H 2013 ACS Nano 7 7
[15] Dietrich K, Lehr D, Helgert C, Tünnermann A, Kley E B 2012 Adv. Mater. 24 OP321Google Scholar
[16] Decker M, Ruther M, Kriegler C E, Zhou J, Soukoulis C M, Linden S, Wegener M 2009 Opt. Lett. 34 16Google Scholar
[17] 陈珊珊, 刘幸, 刘之光, 李家方 2019 物理学报 68 248101Google Scholar
Chen S S, Liu X, Liu Z G, Li J F 2019 Acta Phys. Sin. 68 248101Google Scholar
[18] Huang Y, Yao Z, Hu F, Liu C, Yu L, Jin Y, Xu X 2017 Carbon 119 305Google Scholar
[19] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M 2010 Nat. Nanotechnol. 5 11Google Scholar
[20] Petronijević E, Leahu G, Voti R L, Belardini A, Scian C, Michieli N, Cesca T, Matte G, Sibilia C 2019 Appl. Phys. Lett. 114 053101Google Scholar
[21] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar
[22] Tang B, Li Z, Palacios E, Liu Z, Butun S, Aydin K 2017 IEEE Photonics Technology Letters 29 3Google Scholar
[23] Ouyang L, Wang W, Rosenmann D, Czaplewski D A, Gao J, Yang X 2018 Opt. Express 26 24
[24] Xiao W, Shi X, Zhang Y, Peng W, Zeng Y 2019 Phys. Scr. 94 8
[25] Rongkuo Z, Thomas K, Costas S 2010 Opt. Express 18 14
计量
- 文章访问数: 7920
- PDF下载量: 152
- 被引次数: 0