搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超强耦合量子点-纳米机械振子系统的全光学质量传感

杨建勇 陈华俊

引用本文:
Citation:

基于超强耦合量子点-纳米机械振子系统的全光学质量传感

杨建勇, 陈华俊

All-optical mass sensing based on ultra-strong coupling quantum dot-nanomechanical resonator system

Yang Jian-Yong, Chen Hua-Jun
PDF
HTML
导出引用
  • 提出一种复合量子点-纳米机械振子系统, 该系统以半导体芯片为基底, 量子点嵌入倒置半导体圆锥纳米线的底端, 通过光学抽运-探测技术来驱动量子点-纳米机械振子系统, 研究该系统中的相干光学特性. 通过探测吸收谱给出确定机械振子频率和量子点-纳米机械振子耦合强度的全光学方法. 此外, 基于该系统理论上提出一种在室温下的全光学质量传感方案. 通过测量吸收谱中附着在机械振子上纳米颗粒的质量引起的共振频移, 可间接测出额外纳米颗粒的质量. 与先前的复合纳米机械振子系统相比, 系统中的激子-声子耦合强度的数值可与振子频率比拟, 可实现超强耦合, 有利于相干光学特性的观测, 在超高精度及高分辨率质量传感器件方面有着潜在应用.
    Nanomechanical oscillators have not only the advantages of extremely small mass and volume, but also high vibration frequency and quality factor, so they are widely used in the field of sensors. In recent years, nanomechanical oscillators comprised of graphene nanoribbons, carbon nanotubes, molybdenum disulfide and other materials have been used to make mass sensors. Great progress has been made in the application of mass sensing, but the measurement environment is limited to ultra-low temperature. Presented in this paper is a hybrid quantum dot-nanomechanical resonator (QD-NR) system which is based on semiconductor chips with quantum dots embedded at the bottom of inverted semiconductor conical nanowires. The system has the advantages of high integration level, full optical interface and low temperature compatibility. In addition, it has a coupling strength, a frequency as large as the vibration frequency of the mechanical oscillator, and a long spin life, which provides the possibility of realizing the quantum unassembled readout of a single spin at room temperature. We investigate the coherent optical properties with the optical pump-probe scheme, and an all-optical mean for determining the resonator frequency and the coupling strength of the QD and NR is presented with the absorption spectrum under different parameter regimes. We set the frequency of the pump light to be equal to the exciton frequency and scan the frequency range of the detection light, and then two sharp peaks will appear in the absorption spectrum of the probe light, and the sharp peak is for the frequency of the mechanical oscillator. Moreover, the coupling strength can be obtained from the linear relationship between the peak splitting width and the coupling strength in the absorption spectrum. Further, we put forward a room temperature mass sensing based on the hybrid QD-NR system, and the frequency shift caused by additional nanoparticles can be directly measured with the absorption spectrum, and then the mass of extra nanoparticles can be determined. Comparing with the previous nanomechanical oscillator, the exciton-phonon coupling strength is very strong in the system and can reach the ultra-strong coupling, which is advantageous for observing the coherent optical properties and reaching high precision and resolution mass sensing. In this system, the mass responsivity can reach. The scheme is expected to be applied to mass measurement of some biomolecules, isotopes and other materials, and also be widely used in other fields at a nanogram level.
      通信作者: 陈华俊, chenphysics@126.com
    • 基金项目: 国家自然科学基金(批准号: 11804004, 11647001)和安徽省自然科学基金(批准号: 1708085QA11)资助的课题
      Corresponding author: Chen Hua-Jun, chenphysics@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11647001, 11804004) and the Anhui Provincial Natural Science Foundation of China (Grant No. 1708085QA11)
    [1]

    Li J J, Zhu K D 2013 Phys. Rep. 525 223Google Scholar

    [2]

    Yeo I, De Assis P L, Gloppe A, Dupont-Ferrier E, Verlot P, Malik N S, Dupuy E, Claudon J, Gérard J M, Auffèves A, Nogues G, Seidelin S, Poizat J P, Arcizet O, Richard M 2014 Nat. Nanotech. 9 106Google Scholar

    [3]

    Treutlein P 2014 Nat. Nanotech. 9 99Google Scholar

    [4]

    Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S 2011 Nat. Phys. 7 879Google Scholar

    [5]

    Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603Google Scholar

    [6]

    Unruh W G 1978 Phys. Rev. D 18 1764Google Scholar

    [7]

    Auffeves A, Richard M 2014 Phys. Rev. A 90 023818Google Scholar

    [8]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar

    [9]

    Lecocq F, Clark J B, Simmonds R W, Aumentado J, Teufel J D 2015 Phys. Rev. X 5 041037

    [10]

    钟文学, 王一平, 程广玲 2015 光学学报 35 0827001Google Scholar

    Zhong W X, Wang Y P, Cheng G L 2015 Acta Opt. Sin. 35 0827001Google Scholar

    [11]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682Google Scholar

    [12]

    Li Z Z, Ouyang S H, Lam C H, You J Q 2012 Phys. Rev. B 85 235420Google Scholar

    [13]

    Liao J Q, Kuang L M 2008 Eur. Phys. J. B 63 79Google Scholar

    [14]

    Boisen A 2009 Nat. Nanotech. 4 404Google Scholar

    [15]

    陈华俊, 米贤武 2011 物理学报 60 124206Google Scholar

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206Google Scholar

    [16]

    李金金, 宾文, 朱卡的 2014 科学通报 59 1907Google Scholar

    Li J J, Bin W, Zhu K D 2014 Chin. Sci. Bull. 59 1907Google Scholar

    [17]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [18]

    Xu X, Sun B, Berman P R, Steel D G, Bracker A S, Gammon D, Sham L J 2008 Nat. Phys. 4 692Google Scholar

    [19]

    Liu J, Zhu K D 2018 Photon. Res. 6 867Google Scholar

    [20]

    Imoto N, Haus H A, Yamamoto Y 1985 Phys. Rev. A 32 2287Google Scholar

    [21]

    Pontin A, Bonaldi M, Borrielli A, Marconi L, Marino F, Pandraud G, Prodi G A, Sarro P M, Serra E, Marin F 2018 Phys. Rev. A 97 033833Google Scholar

    [22]

    Chen H J, Zhu K D 2014 J. Opt. Soc. Am. B 31 1684Google Scholar

    [23]

    Chen H J, Chen C Z, Li Y, Fang X W, Tang X D 2016 Sci. Rep. 6 36600Google Scholar

    [24]

    Hanay M S, Kelber S, Naik A K, Chi D, Hentz S, Bullard E C, Colinet E, Duraffourg L, Roukes M L 2012 Nat. Nanotechnol. 7 602Google Scholar

    [25]

    Li J J, Zhu K D 2009 Appl. Phys. Lett. 94 063116Google Scholar

    [26]

    He Y 2017 Nanotechnology 28 255203Google Scholar

  • 图 1  基于超强耦合量子点-纳米机械振子的系统示意图

    Fig. 1.  Schematic diagram of the system based on super-strong coupling quantum dot-nanometer mechanical oscillator.

    图 2  (a)不同温度下探测吸收与探测光-激子失谐量${\varDelta _{\rm{s}}}$的函数关系; (b)室温(300 K)和低温(5 K)下, 不同的振子频率时探测吸收与探测光-激子失谐量${\varDelta _{\rm{s}}}$的函数关系; 图中参数为${\varGamma _1} =0.1\;{\rm{ MHz}}$, ${\varGamma _2} =0.05\;{\rm{ MHz}}$, ${\varOmega _0^2} =0.01\;{\rm{ (MHz}}{{\rm{)}}^2}$, ${\varDelta _0} = 0$, ${g_0} = 0.5{\omega _{\rm{n}}}$

    Fig. 2.  (a) Function relationship between detection absorption and detection light-exciton detuning ${\varDelta _{\rm{s}}}$ at different temperatures; (b) the functional relationship between the detected absorption and the detector-exciton detuning ${\varDelta _{\rm{s}}}$under different oscillator frequencies at room temperature and low temperature. ${\varGamma _1} =0.1\;{\rm{ MHz}}$, ${\varGamma _2} =0.05\;{\rm{ MHz}}$, ${\varOmega _0^2} =0.01\;{\rm{ (MHz}}{{\rm{)}}^2}$, ${\varDelta _0} \!=\! 0$, ${g_0} \!=\! 0.5{\omega _{\rm{n}}} $

    图 3  (a) ${\varDelta _0} = {\omega _{\rm{n}}}$时不同耦合强度得到的探测吸收谱; (b)吸收光谱中两峰的劈裂宽度与耦合强度的关系; 两图中参数均为${\varGamma _1} =0.2\;{\rm{ MHz}}$, ${\varGamma _2} =0.1\;{\rm{ MHz}}$, ${\omega _{\rm{n}}} =0.52\;{\rm{ MHz}}$, ${\varOmega _0} =0.15\;{\rm{ MHz}}$, $Q = 1000$

    Fig. 3.  (a) Detection absorption spectra obtained at different coupling intensities with ${\varDelta _0} = {\omega _{\rm{n}}}$; (b) the relationship between the splitting width of the two peaks in the absorption spectrum and the coupling strength. The parameters in both figures are ${\varGamma _1} =0.2\;{\rm{ MHz}}$, ${\varGamma _2} =0.1\;{\rm{ MHz}}$, ${\omega _{\rm{n}}} =0.52\;{\rm{ MHz}}$, ${\varOmega _0} =0.15\;{\rm{ MHz}}$, $Q = 1000$.

    图 4  (a)振子上外加纳米颗粒时的吸收谱, 图中${\varGamma _1} =0.1\;{\rm{ MHz}}$, ${\varGamma _2} =0.05\;{\rm{ MHz}}$, $\varOmega _0^2 =0.01\;{\rm{ (MHz}}{{\rm{)}}^2}$, ${\varDelta _0} = 0$, ${\omega _{\rm{n}}} =0.52\;{\rm{ MHz}}$, ${g_0} = 0.5{\omega _{\rm{n}}}$, $Q = 1000$; (b)外加纳米颗粒个数与振子频移的关系

    Fig. 4.  (a) Absorption spectra when nanoparticles are added to the oscillator, where ${\varGamma _1} =0.1\;{\rm{ MHz}}$, ${\varGamma _2} =0.05\;{\rm{ MHz}}$, $\varOmega _0^2 =0.01\;{\rm{ (MHz}}{{\rm{)}}^2}$, ${\varDelta _0} = 0$, ${\omega _{\rm{n}}} =0.52 \;{\rm{MHz}}$, ${g_0} = 0.5{\omega _{\rm{n}}}$, $Q = 1000$; (b) the relationship between the number of added nanoparticles and the oscillator frequency shift.

  • [1]

    Li J J, Zhu K D 2013 Phys. Rep. 525 223Google Scholar

    [2]

    Yeo I, De Assis P L, Gloppe A, Dupont-Ferrier E, Verlot P, Malik N S, Dupuy E, Claudon J, Gérard J M, Auffèves A, Nogues G, Seidelin S, Poizat J P, Arcizet O, Richard M 2014 Nat. Nanotech. 9 106Google Scholar

    [3]

    Treutlein P 2014 Nat. Nanotech. 9 99Google Scholar

    [4]

    Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S 2011 Nat. Phys. 7 879Google Scholar

    [5]

    Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603Google Scholar

    [6]

    Unruh W G 1978 Phys. Rev. D 18 1764Google Scholar

    [7]

    Auffeves A, Richard M 2014 Phys. Rev. A 90 023818Google Scholar

    [8]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar

    [9]

    Lecocq F, Clark J B, Simmonds R W, Aumentado J, Teufel J D 2015 Phys. Rev. X 5 041037

    [10]

    钟文学, 王一平, 程广玲 2015 光学学报 35 0827001Google Scholar

    Zhong W X, Wang Y P, Cheng G L 2015 Acta Opt. Sin. 35 0827001Google Scholar

    [11]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682Google Scholar

    [12]

    Li Z Z, Ouyang S H, Lam C H, You J Q 2012 Phys. Rev. B 85 235420Google Scholar

    [13]

    Liao J Q, Kuang L M 2008 Eur. Phys. J. B 63 79Google Scholar

    [14]

    Boisen A 2009 Nat. Nanotech. 4 404Google Scholar

    [15]

    陈华俊, 米贤武 2011 物理学报 60 124206Google Scholar

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206Google Scholar

    [16]

    李金金, 宾文, 朱卡的 2014 科学通报 59 1907Google Scholar

    Li J J, Bin W, Zhu K D 2014 Chin. Sci. Bull. 59 1907Google Scholar

    [17]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [18]

    Xu X, Sun B, Berman P R, Steel D G, Bracker A S, Gammon D, Sham L J 2008 Nat. Phys. 4 692Google Scholar

    [19]

    Liu J, Zhu K D 2018 Photon. Res. 6 867Google Scholar

    [20]

    Imoto N, Haus H A, Yamamoto Y 1985 Phys. Rev. A 32 2287Google Scholar

    [21]

    Pontin A, Bonaldi M, Borrielli A, Marconi L, Marino F, Pandraud G, Prodi G A, Sarro P M, Serra E, Marin F 2018 Phys. Rev. A 97 033833Google Scholar

    [22]

    Chen H J, Zhu K D 2014 J. Opt. Soc. Am. B 31 1684Google Scholar

    [23]

    Chen H J, Chen C Z, Li Y, Fang X W, Tang X D 2016 Sci. Rep. 6 36600Google Scholar

    [24]

    Hanay M S, Kelber S, Naik A K, Chi D, Hentz S, Bullard E C, Colinet E, Duraffourg L, Roukes M L 2012 Nat. Nanotechnol. 7 602Google Scholar

    [25]

    Li J J, Zhu K D 2009 Appl. Phys. Lett. 94 063116Google Scholar

    [26]

    He Y 2017 Nanotechnology 28 255203Google Scholar

  • [1] 曾莹, 佘彦超, 张蔚曦, 杨红. 纳米光纤-半导体量子点分子耦合系统中光孤子的存储与读取. 物理学报, 2024, 73(16): 164202. doi: 10.7498/aps.73.20240184
    [2] 李元和, 卓志瑶, 王健, 黄君辉, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2022, 71(6): 067804. doi: 10.7498/aps.71.20211863
    [3] 李元和, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211863
    [4] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感. 物理学报, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [5] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [6] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性. 物理学报, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [7] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [8] 周洋, 郭健宏. 双量子点结构中Majorana费米子的噪声特性. 物理学报, 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [9] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [10] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [11] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究. 物理学报, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [12] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [13] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [14] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [15] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象. 物理学报, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [16] 王子武, 肖景林. 抛物线性限制势量子点量子比特及其光学声子效应. 物理学报, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [17] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [18] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [19] 刘世荣, 黄伟其, 秦朝建. 氧化硅层中的锗纳米晶体团簇量子点. 物理学报, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [20] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
计量
  • 文章访问数:  7982
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-24
  • 修回日期:  2019-10-15
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回