搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZrS2量子点: 制备、结构及光学特性

周亮亮 吴宏博 李学铭 唐利斌 郭伟 梁晶

引用本文:
Citation:

ZrS2量子点: 制备、结构及光学特性

周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶

ZrS2 quantum dots: Preparation, structure, and optical properties

Zhou Liang-Liang, Wu Hong-Bo, Li Xue-Ming, Tang Li-Bin, Guo Wei, Liang Jing
PDF
HTML
导出引用
  • 近年来, 由于独特的电子结构及优异的光电特性, 过渡金属硫族化合物(TMDs)吸引了研究者的广泛关注. 本文采用“自上而下”的超声剥离法成功制备了尺寸约为3.1 nm的六方结构单分散1T相二硫化锆量子点(1T-ZrS2 QDs). 采用紫外-可见吸光度及光致发光方法, 系统研究了1T-ZrS2 QDs的光学特性. 研究发现: 1T-ZrS2 QDs在283 nm和336 nm处存在特征吸收峰, 并且斯托克斯(Stokes)位移了约130 nm, 荧光量子产率高达53.3%. 研究结果表明: 1T-ZrS2 QDs具有优良的荧光性能及独特的光学性质, 使其在光电探测、多色发光等器件中有潜在的重要应用价值.
    In recent years, transition metal chalcogenides (TMDs) have attracted extensive attention of researchers due to their unique electronic structure and excellent photoelectric properties. In this paper, hexagonal structure 1T-ZrS2 quantum dots (QDs) having a monodisperse grain size of around 3.1 nm is prepared by the ultrasonic exfoliation method. The preparation includes the following steps: ZrS2 powder is ground, followed by ultrasonic exfoliation in 1-methyl-2-pyrrolidone (NMP), and 1T-ZrS2 QDs are collected after centrifugation. The structure, morphology and optical properties of the QDs are studied in detail. The structure, morphology, size distribution, and elemental composition of 1T-ZrS2 QDs are studied by using X-ray diffractometer (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The chemical bonds of 1T-ZrS2 QDs are characterized by X-ray photoelectron microscopy (XPS) and Fourier transform infrared spectrometer (FTIR). The TEM and AFM results show that the 1T-ZrS2 QDs are spherical in shape with uniform size distribution. The sizes of the 1T-ZrS2 QDs follow a Gaussian fitted distribution with an average diameter of WC = 3.1 nm and the FWHM is 1.3 nm. The XRD diffraction pattern of 1T-ZrS2 QDs show wide dispersed diffraction peaks, which is the characteristic of QDs. The diffraction peak at 2θ = 32.3° (d = 0.278 nm) corresponds to the (101) crystal plane, and the weak diffraction peak at 2θ = 56.8°(d = 0.167 nm) belongs to the (103) crystal plane. The grain size is also calculated by using the Debye-Scherrer formula, and the calculated value (2.9 nm) is consistent with the result of TEM (3.1 nm). Two Raman vibration modes (E1g and A1g) are observed. The E1g (507.3 cm–1) and A1g (520.1 cm–1) modes relate to the in-plane and out-of-plane vibration respectively. The Raman intensity of the A1g vibration mode is stronger than that of E1g. The UV-Vis and photoluminescence (PL and PLE) characterizations exhibit that the 1T-ZrS2 QDs have two UV absorption peaks at 283 nm and 336 nm, respectively. The Stokes shift is ~130 nm, the fluorescence quantum yield reaches up to 53.3%. The results show that the 1T-ZrS2 QDs have the excellent fluorescence performance and unique optical properties, which make the 1T-ZrS2 QDs an important material for developing photodetectors, multi-color luminescent devices, and other devices.
      通信作者: 李学铭, lxmscience@163.com ; 唐利斌, scitang@163.com ; 郭伟, weiguo7@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51462037, 61106098)和云南省应用基础研究重点项目(批准号: 2012FA003)资助的课题.
      Corresponding author: Li Xue-Ming, lxmscience@163.com ; Tang Li-Bin, scitang@163.com ; Guo Wei, weiguo7@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51462037, 61106098) and the Key Project of Applied Basic Research of Yunnan Province, China (Grant No. 2012FA003).
    [1]

    黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳 2017 物理学报 66 137801Google Scholar

    Huang J W, Luo L Q, Jin B, Chu S J, Peng R F 2017 Acta Phys. Sin. 66 137801Google Scholar

    [2]

    Duan X, Wang C, Pan A, Yu R, Duan X 2015 Chem. Soc. Rev. 44 8859Google Scholar

    [3]

    Zhen Y X, Yang M, Zhang H, Fu G S, Wang J L, Wang S F, Wang R N 2017 Sci. Bull. 62 1530Google Scholar

    [4]

    Zhao X, Wang T, Wei S, Dai X, Yang L 2017 J. Alloys Compd. 695 2048Google Scholar

    [5]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A 2014 Nat. Nanotechnol. 9 768Google Scholar

    [6]

    Huang Z S, Zhang W X, Zhang W L, Li Y 2014 Nano Res. 7 1731Google Scholar

    [7]

    Li L, Wang H, Fang X 2011 Energy Environ. Sci. 4 2586Google Scholar

    [8]

    Li S, Wang C, Qiu H 2015 Int. J. Hydrogen Energy 40 15503Google Scholar

    [9]

    Wen Y, Zhu Y, Zhang S 2015 RSC Adv. 5 66082Google Scholar

    [10]

    Si Y, Wu H Y, Yang H M 2016 Nanoscale Res. Lett. 11 495Google Scholar

    [11]

    Li L, Fang X, Zhai T 2010 Adv. Mater. 22 4151Google Scholar

    [12]

    张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志 2017 物理学报 66 217301Google Scholar

    Zhang H Z, Li J T, Lü W G, Yang H F, Tang C C, Gu C Z 2017 Acta Phys. Sin. 66 217301Google Scholar

    [13]

    Zhang X, Cheng H, Zhang H 2017 Adv. Mater. 29 1701704Google Scholar

    [14]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Sindoro M 2017 Chem. Rev. 117 6225Google Scholar

    [15]

    Yang W, Zhang B, Ding N 2016 Ultrason. Sonochem. 30 103Google Scholar

    [16]

    Kočišová E, Petr M, Šípová H, Kylián O, Procházka M 2017 Phys. Chem. Chem. Phys. 19 388Google Scholar

    [17]

    Esro M, Vourlias G, Somerton C, Milne W I, Adamopoulos G 2015 Adv. Funct. Mater. 25 134Google Scholar

    [18]

    Wang Z, Zhao B, Li J 2017 Color Res. Appl. 42 10Google Scholar

    [19]

    Gentili P L 2014 Dyes Pigments 110 235Google Scholar

    [20]

    Yu X, Prévot M S, Guijarro N 2015 Nat. Comm. 6 7596Google Scholar

    [21]

    Qian F L, Li X M, Tang L B, Lai S K, Lu C Y, Lau S P 2016 AIP Adv. 6 075116

  • 图 1  1T-ZrS2 QDs的超声法制备机理示意图

    Fig. 1.  Schematic illustration of ultrasonic preparation mechanism of 1T-ZrS2 QDs.

    图 2  1T-ZrS2 QDs的制备、结构、形貌及组分表征 (a)薄膜的制备流程图; (b) TEM图及粒径分布图; (c) HR-TEM图(插图为FFT图); (d) HR-TEM图 (插图为Line-Profile); (e) SEM图; (f) EDS能谱图; (g) AFM图

    Fig. 2.  The preparation, structure, morphology, and component characterizations of 1T-ZrS2 QDs: (a) The flow chart of thin film preparation; (b) SEM image and particle size distribution diagram; (c) HR-TEM image (inset: FFT image); (d) HR-TEM image (inset: Line-Profile); (e) SEM image; (f) EDS spectrum; (g) AFM image.

    图 3  1T-ZrS2 QDs的物相、XPS能谱及光学性质 (a) XPS图; (b) Zr 3d XPS图; (c) S 2p XPS图; (d) XRD衍射图; (e) FTIR图; (f) Raman图; (g) UV-Vis吸收光谱图 (插图为自然光和紫外灯照射下的量子点溶液图像); (h) 色坐标图; (i) Tauc图

    Fig. 3.  The phase, XPS spectra and optical properties of 1T-ZrS2 QDs: (a) Full-scan XPS spectrum; (b) Zr 3d XPS spectrum; (c) S 2p XPS spectrum; (d) XRD diffraction pattern; (e) FTIR spectrum; (f) Raman spectrum; (g) UV-Vis absorption spectra; (h) color coordinate; (i) Tauc plot.

    图 4  1T-ZrS2 QDs的光致发光性质 (a), (c) PL和PLE图; (b), (d) PL峰和PLE峰与能量的关系

    Fig. 4.  The photoluminescence properties of 1T-ZrS2 QDs: (a) and (c) PL and PLE spectra; (b) and (d) the relationship between the peak and energy of PL and PLE, respectively.

    表 1  1T-ZrS2的晶体结构参数

    Table 1.  The crystal parameters of 1T-ZrS2.

    名称PDF#00-011-0679数据
    晶系六方晶系
    空间群$P \overline 3m1 $(164)
    晶格常数a = 3.66 Å, b = 3.66 Å, c = 5.83 Å
    角度α = 90°, β = 90°, γ = 120°
    波长1.5406 nm
    单个晶胞分子数Z1
    下载: 导出CSV
  • [1]

    黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳 2017 物理学报 66 137801Google Scholar

    Huang J W, Luo L Q, Jin B, Chu S J, Peng R F 2017 Acta Phys. Sin. 66 137801Google Scholar

    [2]

    Duan X, Wang C, Pan A, Yu R, Duan X 2015 Chem. Soc. Rev. 44 8859Google Scholar

    [3]

    Zhen Y X, Yang M, Zhang H, Fu G S, Wang J L, Wang S F, Wang R N 2017 Sci. Bull. 62 1530Google Scholar

    [4]

    Zhao X, Wang T, Wei S, Dai X, Yang L 2017 J. Alloys Compd. 695 2048Google Scholar

    [5]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A 2014 Nat. Nanotechnol. 9 768Google Scholar

    [6]

    Huang Z S, Zhang W X, Zhang W L, Li Y 2014 Nano Res. 7 1731Google Scholar

    [7]

    Li L, Wang H, Fang X 2011 Energy Environ. Sci. 4 2586Google Scholar

    [8]

    Li S, Wang C, Qiu H 2015 Int. J. Hydrogen Energy 40 15503Google Scholar

    [9]

    Wen Y, Zhu Y, Zhang S 2015 RSC Adv. 5 66082Google Scholar

    [10]

    Si Y, Wu H Y, Yang H M 2016 Nanoscale Res. Lett. 11 495Google Scholar

    [11]

    Li L, Fang X, Zhai T 2010 Adv. Mater. 22 4151Google Scholar

    [12]

    张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志 2017 物理学报 66 217301Google Scholar

    Zhang H Z, Li J T, Lü W G, Yang H F, Tang C C, Gu C Z 2017 Acta Phys. Sin. 66 217301Google Scholar

    [13]

    Zhang X, Cheng H, Zhang H 2017 Adv. Mater. 29 1701704Google Scholar

    [14]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Sindoro M 2017 Chem. Rev. 117 6225Google Scholar

    [15]

    Yang W, Zhang B, Ding N 2016 Ultrason. Sonochem. 30 103Google Scholar

    [16]

    Kočišová E, Petr M, Šípová H, Kylián O, Procházka M 2017 Phys. Chem. Chem. Phys. 19 388Google Scholar

    [17]

    Esro M, Vourlias G, Somerton C, Milne W I, Adamopoulos G 2015 Adv. Funct. Mater. 25 134Google Scholar

    [18]

    Wang Z, Zhao B, Li J 2017 Color Res. Appl. 42 10Google Scholar

    [19]

    Gentili P L 2014 Dyes Pigments 110 235Google Scholar

    [20]

    Yu X, Prévot M S, Guijarro N 2015 Nat. Comm. 6 7596Google Scholar

    [21]

    Qian F L, Li X M, Tang L B, Lai S K, Lu C Y, Lau S P 2016 AIP Adv. 6 075116

  • [1] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合. 物理学报, 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [2] 胡倩颖, 许杨. 二维半导体材料中激子对介电屏蔽效应的探测及其应用. 物理学报, 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [3] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [4] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究. 物理学报, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [5] 白旭芳, 赵玉伟, 尹洪武, 额尔敦朝鲁. 氢化杂质和厚度效应对高斯势量子点中二能级体系量子跃迁的影响. 物理学报, 2018, 67(17): 177801. doi: 10.7498/aps.67.20180341
    [6] 周愈之. 过渡金属硫族化合物柔性基底体系的模型与应用. 物理学报, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [7] 李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然. 二维半导体过渡金属硫化物的逻辑集成器件. 物理学报, 2017, 66(21): 218503. doi: 10.7498/aps.66.218503
    [8] 孙立志, 赵谡玲, 徐征, 尹慧丽, 张成文, 龙志娟, 洪晓霞, 王鹏, 徐叙瑢. 基于量子点和MEH-PPV的白光发光二极管的研究. 物理学报, 2016, 65(6): 067301. doi: 10.7498/aps.65.067301
    [9] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [10] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究. 物理学报, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [11] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [12] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管. 物理学报, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [13] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [14] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [15] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [16] 彭银生, 叶小玲, 徐波, 牛洁斌, 贾锐, 王占国, 梁松, 杨晓红. 二维GaAs 基光子晶体微腔的制作与光谱特性分析. 物理学报, 2010, 59(10): 7073-7077. doi: 10.7498/aps.59.7073
    [17] 王天琪, 俞重远, 刘玉敏, 芦鹏飞. 有限元法分析不同形状量子点的应变能及弛豫度变化. 物理学报, 2009, 58(8): 5618-5623. doi: 10.7498/aps.58.5618
    [18] 陈英杰, 肖景林. 抛物线性限制势二能级系统量子点量子比特的温度效应. 物理学报, 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [19] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [20] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
计量
  • 文章访问数:  12712
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-06
  • 修回日期:  2019-05-11
  • 刊出日期:  2019-07-20

/

返回文章
返回