搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维半导体材料中激子对介电屏蔽效应的探测及其应用

胡倩颖 许杨

引用本文:
Citation:

二维半导体材料中激子对介电屏蔽效应的探测及其应用

胡倩颖, 许杨

Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application

Hoo Qian-Ying, Xu Yang
PDF
HTML
导出引用
  • 二维过渡金属硫族化合物作为二维半导体材料领域研究的重要分支, 凭借较强的光-物质相互作用和独特的自旋-谷锁定等特性, 吸引了广泛而持久的关注. 单层的二维过渡金属硫族化合物半导体具有直接带隙, 在二维的极限下, 由于介电屏蔽效应的减弱, 电荷间的库仑相互作用得到了显著的增强, 其光学性质主要由紧密束缚的电子-空穴对—激子主导. 本文简单回顾了近年来二维过渡金属硫族化合物光谱学的研究历程, 阐述了栅压和介电环境对激子的调制作用, 之后重点介绍了一种新颖的激子探测方法. 由于激发态激子(里德伯态)的玻尔半径远大于单原子层本身的厚度, 电子-空穴对之间的电场线得以延伸到自身之外的其他材料中. 这使得二维半导体材料的激子可以作为一种高效的量子探测器, 感知周围材料中与介电函数相关的物理性质的变化. 本文列举了单层WSe2激子在探测石墨烯-氮化硼莫尔(moiré)超晶格势场引发的石墨烯二阶狄拉克点, 以及WS2/WSe2莫尔超晶格中分数填充的关联绝缘态中的应用. 最后, 本文展望了这种无损便捷、高空间分辨率、宽适用范围的激子探测方法在其他领域的潜在应用场景.
    Atomically thin transition metal dichalcogenides (TMDCs) like MX2 (M = W or Mo, X = S or Se) are well-known examples of two-dimensional (2D) semiconductors. They have attracted wide and long-lasting attention due to the strong light-matter interaction and unique spin-valley locking characteristics. In the 2D limit, the reduced dielectric screening significantly enhances the Coulomb interaction. The optical properties of monolayer TMDCs are thus dominated by excitons, the tightly bound electron-hole pairs. In this work, we briefly overview the history and recent research progress of optical spectroscopy studies on TMDCs. We first introduce the layer-dependent band structure and the corresponding modifications on optical transitions, and briefly mention the effects of external magnetic fields and the charge doping on excitons. We then introduce a novel sensing technique enabled by the sensitivity of excitons to the dielectric environment. The exciton excited states (Rydberg states) observed in monolayer TMDCs have large Bohr radii (> few nm), where the electric field lines between electron-hole pairs well extends out of the material. Hence the Coulomb interaction (which affects the quasiparticle band gap and exciton binding energies) in the monolayer TMDC is sensitive to the dielectric environment, making the excitons in 2D semiconductor an efficient quantum sensor in probing dielectric properties of the surroundings. The method is of high spatial resolution and only diffraction limited. We enumerate the applications of monolayer WSe2 dielectric sensor in detecting the secondary Dirac point of graphene induced by the graphene-hBN superlattice potential, as well as the fractional correlated insulating states emerging in WS2/WSe2 moiré superlattices. Meanwhile, a unified framework for describing the many-body interactions and dynamical screenings in the system is still lacking. Future theoretical and experimental efforts are needed for a complete understanding. Finally, we further discuss the perspectives and potential applications of this non-destructive and efficient dielectric sensing method.
      通信作者: 许杨, yang.xu@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA1401300)和国家自然科学基金(批准号: 12174439)资助的课题.
      Corresponding author: Xu Yang, yang.xu@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1401300) and the National Natural Science Foundation of China (Grant No. 12174439).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Geim A K 2009 Science 324 1530Google Scholar

    [4]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [5]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [6]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [7]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [8]

    Xu X, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343Google Scholar

    [9]

    Mak K F, Xiao D, Shan J 2018 Nat. Photonics 12 451Google Scholar

    [10]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [11]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [12]

    Sidler M, Back P, Cotlet O, Srivastava A, Fink T, Kroner M, Demler E, Imamoglu A 2017 Nat. Phys. 13 255

    [13]

    Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W, Xu X 2013 Nat. Commun. 4 2498Google Scholar

    [14]

    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, Shan J 2013 Nat. Mater. 12 207Google Scholar

    [15]

    Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091Google Scholar

    [16]

    Raja A, Chaves A, Yu J, Arefe G, Hill H M, Rigosi A F, Berkelbach T C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus L E, Heinz T F, Reichman D R, Chernikov A 2017 Nat. Commun. 8 15251Google Scholar

    [17]

    Qiu Z, Trushin M, Fang H, Verzhbitskiy I, Gao S, Laksono E, Yang M, Lyu P, Li J, Su J, Telychko M, Watanabe K, Taniguchi T, Wu J, Neto A H C, Yang L, Eda G, Adam S, Lu J 2019 Sci. Adv. 5 eaaw2347Google Scholar

    [18]

    Xu Y, Horn C, Zhu J, Tang Y, Ma L, Li L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2021 Nat. Mater. 20 645Google Scholar

    [19]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [20]

    Dickinson R G, Pauling L 1923 J. Am. Chem. Soc. 45 1466Google Scholar

    [21]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193Google Scholar

    [22]

    Frindt R F, Yoffe A D 1963 Proc. R. Soc. A 273 69

    [23]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [24]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [25]

    Jin W, Yeh P C, Zaki N, Zhang D, Sadowski J T, Al-Mahboob A, Van Der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood R M 2013 Phys. Rev. Lett. 111 106801Google Scholar

    [26]

    Liu Y, Stradins P, Wei S H 2016 Sci. Adv. 2 1600069Google Scholar

    [27]

    Shree S, Paradisanos I, Marie X, Robert C, Urbaszek B 2021 Nat. Rev. Phys. 3 39

    [28]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [29]

    Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [30]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [31]

    Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Tartakovskii A I, Novoselov K S 2015 Nat. Mater. 14 301Google Scholar

    [32]

    Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H, Xu X 2014 Nat. Nanotechnol. 9 268Google Scholar

    [33]

    He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X, Lu C Y, Pan J W 2015 Nat. Nanotechnol. 10 497Google Scholar

    [34]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [35]

    Zhu Z Y, Cheng Y C, Schwingenschlögl U 2011 Phys. Rev. B 84 153402Google Scholar

    [36]

    Horng J, Martin E W, Chou Y H, Courtade E, Chang T C, Hsu C Y, Wentzel M H, Ruth H G, Lu T C, Cundiff S T, Wang F, Deng H 2020 Phys. Rev. Appl. 14 024009Google Scholar

    [37]

    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar

    [38]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [39]

    Xiao D, Liu G Bin, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [40]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494Google Scholar

    [41]

    Sallen G, Bouet L, Marie X, Wang G, Zhu C R, Han W P, Lu Y, Tan P H, Amand T, Liu B L, Urbaszek B 2012 Phys. Rev. B 86 081301Google Scholar

    [42]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490Google Scholar

    [43]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643Google Scholar

    [44]

    Cai T, Yang S A, Li X, Zhang F, Shi J, Yao W, Niu Q 2013 Phys. Rev. B 88 115140Google Scholar

    [45]

    Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148Google Scholar

    [46]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoglu A 2015 Nat. Phys. 11 141Google Scholar

    [47]

    Hill H M, Rigosi A F, Roquelet C, Chernikov A, Berkelbach T C, Reichman D R, Hybertsen M S, Brus L E, Heinz T F 2015 Nano Lett. 15 2992Google Scholar

    [48]

    Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S, Heinz T F 2014 Phys. Rev. Lett. 113 076802Google Scholar

    [49]

    Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Del Águila A G, Christianen P C M, Bratschitsch R, Schüller C, Korn T 2016 Nat. Commun. 7 12715Google Scholar

    [50]

    Shang J, Shen X, Cong C, Peimyoo N, Cao B, Eginligil M, Yu T 2015 ACS Nano 9 647Google Scholar

    [51]

    Efimkin D K, MacDonald A H 2017 Phys. Rev. B 95 035417Google Scholar

    [52]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [53]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [54]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [55]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [56]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [57]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [58]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [59]

    Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, Wang F 2020 Nature 579 56Google Scholar

    [60]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [61]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [62]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [63]

    Beechem T E, Ohta T, Diaconescu B, Robinson J T 2014 ACS Nano 8 1655Google Scholar

    [64]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [65]

    Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Zeldov E 2020 Nature 581 47Google Scholar

    [66]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, Leroy B J 2012 Nat. Phys. 8 382Google Scholar

    [67]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [68]

    Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [69]

    Liu E, Taniguchi T, Watanabe K, Gabor N M, Cui Y T, Lui C H 2021 Phys. Rev. Lett. 127 037402Google Scholar

  • 图 1  TMDCs的结构和电子性质 (a) TMDCs 2H, 1T, 1T'相的晶体结构和层间堆叠序示意图; (b) 基于密度泛函理论计算的2H-MoS2块材, 四层、两层和单层的能带结构[23] ; (c) 6种常见TMDCs的能带排布[26]; (d) 单层MoS2的价带劈裂示意图, 其中红色代表自旋向上, 蓝色代表自旋向下; (e) TMDCs中的激子示意图

    Fig. 1.  Structure and properties of TMDCs: (a) Atomic structure and stacking order of TMDCs in their trigonal prismatic (2H), distorted octahedral (1T) and dimerized (1T') phases; (b) calculated band structure evolution for 2H-MoS2 with decreasing thicknesses[23]; (c) calculated band alignment between monolayer TMDCs[26]; (d) schematic spin splitting of the bands at the K and K' points on the corners of the Brillouin zone of monolayer MoS2, where red and blue colors indicate up and down spin polarization, respectively; (e) schematic illustration of the exciton formation in TMDCs.

    图 2  层数依赖的MoS2光致发光光谱[24] (a) 单层和双层MoS2的光致发光光谱, 插图是1—6层MoS2发光的量子产率; (b) 1—6层MoS2的激子共振峰(光学带隙)能量变化

    Fig. 2.  Thickness-dependent PL of MoS2[24]: (a) PL spectra for mono- and bilayer MoS2 samples, where the inset is PL quantum yield of MoS2 ranging from 1 to 6 layers; (b) energy variation of exciton resonance peak (optical band gap) energy of 1–6 layers of MoS2.

    图 3  TMDCs的谷光学选择定则 (a)零磁场下的能带示意图及谷光学选择定则[41]; (b)谷对比的MoS2偏振光致发光光谱; (c)面外垂直磁场下的能带示意图; (d)外加磁场下谷对比的WS2反射谱[43]

    Fig. 3.  Optical selection rules of TMDCs: (a) Schematic illustrations of energy band and selection rules for valley-selective optical transitions at B = 0; (b) polarized photoluminescence spectra of valley-contrasted MoS2 [41]; (c) schematic diagram of the energy bands under the out-of-plane vertical magnetic field; (d) valley-contrast reflection contrast spectra of WS2 under external magnetic fields[43]

    图 4  TMDCs的激子里德伯态 (a)理想二维半导体的光吸收示意图[11]; (b)单层WS2的微分反射谱[48]; (c)实验及计算的WS2激子里德伯态共振能量[48]

    Fig. 4.  Exciton Rydberg states of monolayer TMDCs: (a) Schematic illustration of light absorption of ideal 2D semiconductors[11]; (b) reflection contrast derivative of monolayer WS2 [48]; (c) experimentally extracted and calculated resonance energies of exciton Rydberg states[48].

    图 5  栅压对二维激子的调控 (a)栅压调控的示意图; (b)吸引极化子和排斥极化子的示意图; (c)理论计算的忽略费米海(上)和考虑费米海(下)情况下的光导谱[51]; (d)实验测得的1.6 K下栅压调控的单层WSe2光致发光光谱; (e)实验测得的1.6 K下栅压调控的d单层WSe2反射谱

    Fig. 5.  Electrostatic charging effects of 2D excitons: (a) Schematic illustration of electrostatic gating; (b) schematic diagram of attractive polarons (AP) and repulsive polarons (RP); (c) calculated optical conductivity of excitons without (top panel) and within (bottom panel) Fermi sea[51]; (d) photoluminescence (PL) of monolayer WSe2 as a function of gate voltage and photon energy at a temperature of 1.6 K; (e) reflection contrast of monolayer WSe2 as a function of gate voltage and photon energy at a temperature of 1.6 K.

    图 6  TMDCs在不同介电环境下的反射谱[16] (a)介电环境对二维TMDCs带隙的调制示意图; (b)双层石墨烯对单层WS2反射谱的调制; (c) 1s和2s激子能量间距与石墨烯层数的关系; (d)不同衬底组合下的1s激子共振能量及激子束缚能

    Fig. 6.  Reflection contrast of TMDCs in different dielectric environment[16]: (a) Schematic illustration of bandgap renormalization of 2D TMDCs; (b) reflection contrast spectra of monolayer WS2 with and without the neighboring 2-layer-graphene; (c) energy separation between 1s and 2s excitons with increasing thickness of the neighboring graphene; (d) 1 s resonance energy and exciton binding energy with different neighboring materials.

    图 7  动态介电屏蔽下的TMDCs[17] (a)扫描隧道谱测量的ReSe2带隙随栅压的变化; (b) ReSe2反射谱中随栅压几乎不变的激子共振能量; (c)扫描隧道谱测得的准粒子带隙(Eg), 反射谱测得的光学带隙(Eopt)以及由此计算出的激子束缚能(Eb)随栅压的变化; (d)石墨烯不同掺杂程度下ReSe2的激子和能带示意图

    Fig. 7.  TMDCs under dynamic screening[17]: (a) Bandgap evolution of ReSe2 with gate voltages obtained by scaning tunnelling spectroscopy; (b) nearly gate-independent exciton resonance energy of ReSe2; (c) evolution of bandgap (Eg), optical resonance energy (Eopt) and binding energy (Eb) with gate voltage; (d) schematic band structure of dynamically screened ReSe2 with the neighboring graphene at different doping levels.

    图 8  石墨烯-氮化硼异质结的激子探测[18] (a) WSe2激子探测石墨烯-氮化硼莫尔超晶格的器件结构(上), 探测原理示意图(中)及周期性衬底对WSe2带隙宽度的调控(下)示意图; (b) 石墨烯中载流子浓度变化对WSe2反射谱的调制; (c) 图(b)中的带隙能量与栅压和载流子浓度平方根(插图)的关系; (d) 当石墨烯与上层氮化硼零度排列形成莫尔超晶格时, 石墨烯中载流子浓度变化对WSe2反射谱的调制; (e) 石墨烯二阶狄拉克点(左)和伴线(右)的来源示意图

    Fig. 8.  Dielectric sensing of graphene/hBN heterostructures[18]: (a) Device structure of the graphene/hBN heterostructure with WSe2 dielectric sensor (top), illustration of creating spatially periodic electronic band structure in monolayer WSe2 by dielectric screening (middle), and bandgap (Eg) of WSe2 modulated by a substrate with periodic dielectric constant (bottom); (b) gate-dependent reflection contrast spectrum of WSe2 sensor under dynamic screening of the neighboring graphene; (c) the extracted quasiparticle band gap Eg of monolayer WSe2 in (b); (d) gate-dependent reflection contrast spectrum of WSe2 sensor with graphene/hBN moiré superlattice; (e) origin of the secondary Dirac point (left panel) and replicas (right panel) in (d).

    图 9  WSe2/WS2莫尔超晶格的激子探测[19] (a) WSe2激子探测WSe2/WS2样品的器件结构示意图; (b)在没有WSe2探测层的区域, WSe2/WS2样品自身的反射谱; (c)有WSe2探测层区域的反射谱; (d)图(c)中2s区域体现出的一系列关联绝缘态; (e)几种分数填充的示意图

    Fig. 9.  Dielectric sensing of WSe2/WS2 moiré superlattice[19]: (a) Device structure and electric circuitry of the WSe2/WS2 moiré heterobilayer with WSe2 dielectric sensor; (b) optical response of the WSe2/WS2 moiré heterobilayer without WSe2 dielectric sensor; (c) optical response of the WSe2/WS2 moiré heterobilayer and WSe2 sensor; (d) abundance of correlated insulating states in WSe2/WS2 moiré heterobilayer revealed by 2s resonance of WSe2; (e) schematic illustration of charge-order configuration in correlated insulating states.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Geim A K 2009 Science 324 1530Google Scholar

    [4]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [5]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [6]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [7]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [8]

    Xu X, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343Google Scholar

    [9]

    Mak K F, Xiao D, Shan J 2018 Nat. Photonics 12 451Google Scholar

    [10]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [11]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [12]

    Sidler M, Back P, Cotlet O, Srivastava A, Fink T, Kroner M, Demler E, Imamoglu A 2017 Nat. Phys. 13 255

    [13]

    Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W, Xu X 2013 Nat. Commun. 4 2498Google Scholar

    [14]

    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, Shan J 2013 Nat. Mater. 12 207Google Scholar

    [15]

    Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091Google Scholar

    [16]

    Raja A, Chaves A, Yu J, Arefe G, Hill H M, Rigosi A F, Berkelbach T C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus L E, Heinz T F, Reichman D R, Chernikov A 2017 Nat. Commun. 8 15251Google Scholar

    [17]

    Qiu Z, Trushin M, Fang H, Verzhbitskiy I, Gao S, Laksono E, Yang M, Lyu P, Li J, Su J, Telychko M, Watanabe K, Taniguchi T, Wu J, Neto A H C, Yang L, Eda G, Adam S, Lu J 2019 Sci. Adv. 5 eaaw2347Google Scholar

    [18]

    Xu Y, Horn C, Zhu J, Tang Y, Ma L, Li L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2021 Nat. Mater. 20 645Google Scholar

    [19]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [20]

    Dickinson R G, Pauling L 1923 J. Am. Chem. Soc. 45 1466Google Scholar

    [21]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193Google Scholar

    [22]

    Frindt R F, Yoffe A D 1963 Proc. R. Soc. A 273 69

    [23]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [24]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [25]

    Jin W, Yeh P C, Zaki N, Zhang D, Sadowski J T, Al-Mahboob A, Van Der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood R M 2013 Phys. Rev. Lett. 111 106801Google Scholar

    [26]

    Liu Y, Stradins P, Wei S H 2016 Sci. Adv. 2 1600069Google Scholar

    [27]

    Shree S, Paradisanos I, Marie X, Robert C, Urbaszek B 2021 Nat. Rev. Phys. 3 39

    [28]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [29]

    Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [30]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [31]

    Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Tartakovskii A I, Novoselov K S 2015 Nat. Mater. 14 301Google Scholar

    [32]

    Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H, Xu X 2014 Nat. Nanotechnol. 9 268Google Scholar

    [33]

    He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X, Lu C Y, Pan J W 2015 Nat. Nanotechnol. 10 497Google Scholar

    [34]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [35]

    Zhu Z Y, Cheng Y C, Schwingenschlögl U 2011 Phys. Rev. B 84 153402Google Scholar

    [36]

    Horng J, Martin E W, Chou Y H, Courtade E, Chang T C, Hsu C Y, Wentzel M H, Ruth H G, Lu T C, Cundiff S T, Wang F, Deng H 2020 Phys. Rev. Appl. 14 024009Google Scholar

    [37]

    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar

    [38]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [39]

    Xiao D, Liu G Bin, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [40]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494Google Scholar

    [41]

    Sallen G, Bouet L, Marie X, Wang G, Zhu C R, Han W P, Lu Y, Tan P H, Amand T, Liu B L, Urbaszek B 2012 Phys. Rev. B 86 081301Google Scholar

    [42]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490Google Scholar

    [43]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643Google Scholar

    [44]

    Cai T, Yang S A, Li X, Zhang F, Shi J, Yao W, Niu Q 2013 Phys. Rev. B 88 115140Google Scholar

    [45]

    Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148Google Scholar

    [46]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoglu A 2015 Nat. Phys. 11 141Google Scholar

    [47]

    Hill H M, Rigosi A F, Roquelet C, Chernikov A, Berkelbach T C, Reichman D R, Hybertsen M S, Brus L E, Heinz T F 2015 Nano Lett. 15 2992Google Scholar

    [48]

    Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S, Heinz T F 2014 Phys. Rev. Lett. 113 076802Google Scholar

    [49]

    Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Del Águila A G, Christianen P C M, Bratschitsch R, Schüller C, Korn T 2016 Nat. Commun. 7 12715Google Scholar

    [50]

    Shang J, Shen X, Cong C, Peimyoo N, Cao B, Eginligil M, Yu T 2015 ACS Nano 9 647Google Scholar

    [51]

    Efimkin D K, MacDonald A H 2017 Phys. Rev. B 95 035417Google Scholar

    [52]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [53]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [54]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [55]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [56]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [57]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [58]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [59]

    Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, Wang F 2020 Nature 579 56Google Scholar

    [60]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [61]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [62]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [63]

    Beechem T E, Ohta T, Diaconescu B, Robinson J T 2014 ACS Nano 8 1655Google Scholar

    [64]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [65]

    Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Zeldov E 2020 Nature 581 47Google Scholar

    [66]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, Leroy B J 2012 Nat. Phys. 8 382Google Scholar

    [67]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [68]

    Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [69]

    Liu E, Taniguchi T, Watanabe K, Gabor N M, Cui Y T, Lui C H 2021 Phys. Rev. Lett. 127 037402Google Scholar

  • [1] 刘海洋, 范晓跃, 范豪杰, 李阳阳, 唐天鸿, 王刚. 等离子体轰击单层WS2引入缺陷态对束缚激子光学性质的影响. 物理学报, 2024, 73(13): 137802. doi: 10.7498/aps.73.20240475
    [2] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [3] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [4] 邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁. II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光. 物理学报, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [5] 周愈之. 过渡金属硫族化合物柔性基底体系的模型与应用. 物理学报, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [6] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [7] 李文生, 孙宝权. 电场调谐InAs量子点荷电激子光学跃迁. 物理学报, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [8] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究. 物理学报, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [9] 沈曼, 张亮, 刘建军. 磁场和量子点尺寸对激子性质的影响. 物理学报, 2012, 61(21): 217103. doi: 10.7498/aps.61.217103
    [10] 邓艳平, 吕彬彬, 田强. 非对称方势阱中的激子及其与声子的相互作用. 物理学报, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [11] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [12] 金 华, 刘 舒, 张振中, 张立功, 郑著宏, 申德振. (CdZnTe, ZnSeTe)/ZnTe复合量子阱中激子隧穿过程. 物理学报, 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [13] 张 红, 刘 磊, 刘建军. 对称GaAs/Al0.3Ga0.7As双量子阱中激子的束缚能. 物理学报, 2007, 56(1): 487-490. doi: 10.7498/aps.56.487
    [14] 熊 稳, 赵 铧. ZnO薄膜的激子能量和束缚能的计算. 物理学报, 2007, 56(2): 1061-1065. doi: 10.7498/aps.56.1061
    [15] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [16] 董庆瑞, 牛智川. 垂直耦合自组织InAs双量子点中激子能的计算. 物理学报, 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [17] 金 华, 张立功, 郑著宏, 孔祥贵, 安立楠, 申德振. ZnCdSe量子阱/CdSe量子点耦合结构中的激子隧穿过程. 物理学报, 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
    [18] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [19] 刘文楷, 林世鸣, 张存善. 半导体微腔中腔模、重空穴激子模和轻空穴激子模耦合. 物理学报, 2002, 51(9): 2052-2056. doi: 10.7498/aps.51.2052
    [20] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算). 物理学报, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
计量
  • 文章访问数:  14116
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-08
  • 修回日期:  2022-02-07
  • 上网日期:  2022-02-28
  • 刊出日期:  2022-06-20

/

返回文章
返回